Sloshing, Steklov and corners: Asymptotics of Steklov eigenvalues for curvilinear polygons

被引:4
|
作者
Levitin, Michael [1 ]
Parnovski, Leonid [2 ]
Polterovich, Iosif [3 ]
Sher, David A. [4 ]
机构
[1] Univ Reading, Dept Math & Stat, POB 220, Reading RG6 6AX, Berks, England
[2] UCL, Dept Math, London, England
[3] Univ Montreal, Dept Math & Stat, Montreal, PQ, Canada
[4] Depaul Univ, Dept Math Sci, Chicago, IL 60604 USA
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
SHORT SURFACE-WAVES; SPECTRAL GEOMETRY; QUANTUM GRAPHS; OPERATORS; DOMAINS; DEPENDENCE; FREQUENCY; EQUATION;
D O I
10.1112/plms.12461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain asymptotic formulae for the Steklov eigenvalues and eigenfunctions of curvilinear polygons in terms of their side lengths and angles. These formulae are quite precise: the errors tend to zero as the spectral parameter tends to infinity. The Steklov problem on planar domains with corners is closely linked to the classical sloshing and sloping beach problems in hydrodynamics; as we show it is also related to quantum graphs. Somewhat surprisingly, the arithmetic properties of the angles of a curvilinear polygon have a significant effect on the boundary behaviour of the Steklov eigenfunctions. Our proofs are based on an explicit construction of quasimodes. We use a variety of methods, including ideas from spectral geometry, layer potential analysis, and some new techniques tailored to our problem.
引用
收藏
页码:359 / 487
页数:129
相关论文
共 50 条
  • [31] Steklov eigenvalues of nearly hyperspherical domains
    Han Tan, Chee
    Viator, Robert
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 480 (2287):
  • [32] Higher Dimensional Surgery and Steklov Eigenvalues
    Han Hong
    The Journal of Geometric Analysis, 2021, 31 : 11931 - 11951
  • [33] Electromagnetic Steklov eigenvalues: approximation analysis
    Halla, Martin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (01): : 57 - 76
  • [34] AN INEQUALITY FOR STEKLOV EIGENVALUES FOR PLANAR DOMAINS
    EDWARD, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1994, 45 (03): : 493 - 496
  • [35] Eigenvalues of the Steklov problem in an infinite cylinder
    Motygin, OV
    Kuznetsov, NG
    MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 463 - 468
  • [36] MAXIMIZATION OF THE STEKLOV EIGENVALUES WITH A DIAMETER CONSTRAINT
    Al Sayed, Abdelkader
    Bogosel, Beniamin
    Henrot, Antoine
    Nacry, Florent
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (01) : 710 - 729
  • [37] Singular Perturbation of Simple Steklov Eigenvalues
    Gryshchuk, Serhii
    Lanza de Cristoforis, Massimo
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 700 - 703
  • [38] Extremal problems for Steklov eigenvalues on annuli
    Fan, Xu-Qian
    Tam, Luen-Fai
    Yu, Chengjie
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 1043 - 1059
  • [39] ON THE EXISTENCE AND STABILITY OF MODIFIED MAXWELL STEKLOV EIGENVALUES
    Halla, Martin
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (05) : 5445 - 5463
  • [40] Flexibility of Steklov eigenvalues via boundary homogenisation
    Mikhail Karpukhin
    Jean Lagacé
    Annales mathématiques du Québec, 2024, 48 : 175 - 186