Counting singular plane curves via Hilbert schemes

被引:5
|
作者
Russell, H [1 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
关键词
Hilbert scheme; singularities;
D O I
10.1016/S0001-8708(02)00026-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a method of counting the number of curves with a given type of singularity in a suitably ample linear series on a smooth surface using punctual Hilbert schemes. The types of singularities for which our results suffice include the topological type with local equation x(a) + y(b) with less than or equal toaless than or equal to3b. We work out the example of curves with the analytic type of singularity with local equation x(2) + y(n) for 1 < n < 9. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:38 / 58
页数:21
相关论文
共 50 条
  • [31] Irreducibility and singularities of some nested Hilbert schemes
    Ryan, Tim
    Taylor, Gregory
    JOURNAL OF ALGEBRA, 2022, 609 : 380 - 406
  • [32] Frobenius splitting of Hilbert schemes of points on surfaces
    Shrawan Kumar
    Jesper Funch Thomsen
    Mathematische Annalen, 2001, 319 : 797 - 808
  • [33] Non-connected toric Hilbert schemes
    Francisco Santos
    Mathematische Annalen, 2005, 332 : 645 - 665
  • [34] Irreducible components of the equivariant punctual Hilbert schemes
    Evain, L
    ADVANCES IN MATHEMATICS, 2004, 185 (02) : 328 - 346
  • [35] On vector bundles over surfaces and Hilbert schemes
    Indranil Biswas
    D. S. Nagaraj
    Archiv der Mathematik, 2013, 101 : 513 - 517
  • [36] Ideals of the cohomology rings of Hilbert schemes and their applications
    Li, WP
    Qin, ZB
    Wang, WQ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (01) : 245 - 265
  • [37] Open Covers and Lex Points of Hilbert Schemes Over Quotient Rings via Relative Marked Bases
    Bertone, Cristina
    Cioffi, Francesca
    Orth, Matthias
    Seiler, Werner M.
    EXPERIMENTAL MATHEMATICS, 2025, 34 (01) : 38 - 52
  • [38] A GIT CONSTRUCTION OF DEGENERATIONS OF HILBERT SCHEMES OF POINTS
    Gulbrandsen, Martin G.
    Halle, Lars H.
    Hulek, Klaus
    DOCUMENTA MATHEMATICA, 2019, 24 : 421 - 472
  • [39] Hilbert schemes of points and quasi-modularity
    Shen, Zhongyan
    Qin, Zhenbo
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2020, 16 (05) : 1697 - 1730
  • [40] On vector bundles over surfaces and Hilbert schemes
    Biswas, Indranil
    Nagaraj, D. S.
    ARCHIV DER MATHEMATIK, 2013, 101 (06) : 513 - 517