Fractional-Based Stochastic Gradient Algorithms for Time-Delayed ARX Models

被引:11
作者
Xu, Tianyang [1 ,2 ]
Chen, Jing [1 ]
Pu, Yan [1 ]
Guo, Liuxiao [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Management & Engn, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Parameter estimation; Time delay; Fractional derivative; ARX model; Momentum method; Adaptive method; SYSTEM-IDENTIFICATION; DESCENT;
D O I
10.1007/s00034-021-01874-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, two fractional-based stochastic gradient (FSG) algorithms for time-delayed auto-regressive exogenous (ARX) models are proposed. By combining momentum and adaptive methods, a momentum-based FSG and an adaptive-based FSG algorithms are developed. These two FSG algorithms have faster convergence rates when compared with the stochastic gradient algorithm. The mechanism of the convergence is proved in theory. Furthermore, two simulated examples are presented to illustrate the efficiency of the new proposed algorithms.
引用
收藏
页码:1895 / 1912
页数:18
相关论文
共 52 条
  • [31] Milton John G., 2015, IFAC - Papers Online, V48, P87, DOI 10.1016/j.ifacol.2015.09.358
  • [32] Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm
    Needell, Deanna
    Srebro, Nathan
    Ward, Rachel
    [J]. MATHEMATICAL PROGRAMMING, 2016, 155 (1-2) : 549 - 573
  • [33] Owolabi K., 2018, Progr. Fract. Differ. Appl., V4, P99, DOI [10.18576/pfda/040204, DOI 10.18576/PFDA/040204]
  • [34] Accelerating Minibatch Stochastic Gradient Descent Using Typicality Sampling
    Peng, Xinyu
    Li, Li
    Wang, Fei-Yue
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (11) : 4649 - 4659
  • [35] The Grunwald-Letnikov method for fractional differential equations
    Scherer, Rudolf
    Kalla, Shyam L.
    Tang, Yifa
    Huang, Jianfei
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 902 - 917
  • [36] Nonlinear System Identification A USER-ORIENTED ROAD MAP
    Schoukens, Johan
    Ljung, Lennart
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2019, 39 (06): : 28 - 99
  • [37] Fractional-order adaptive signal processing strategies for active noise control systems
    Shah, Syed M.
    Samar, R.
    Khan, N. M.
    Raja, M. A. Z.
    [J]. NONLINEAR DYNAMICS, 2016, 85 (03) : 1363 - 1376
  • [38] Song C., 2020, TECHNOL INNOV APPL, V9, P1
  • [39] A Novel Generalization of Modified LMS Algorithm to Fractional Order
    Tan, Yun
    He, Zhiqiang
    Tian, Baoyu
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (09) : 1244 - 1248
  • [40] Decomposition- and Gradient-Based Iterative Identification Algorithms for Multivariable Systems Using the Multi-innovation Theory
    Wan, Lijuan
    Ding, Feng
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (07) : 2971 - 2991