A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach

被引:52
作者
Falco, A. [1 ]
Nouy, A. [2 ]
机构
[1] Univ CEU Cardenal Herrera, Dept Ciencias Fis Matemat & Computac, Alfara Del Patriarca 46115, Valencia, Spain
[2] Univ Nantes, Ecole Cent Nantes, UMR CNRS 6183, GeM Inst Rech Genie Civil & Mecan, F-44321 Nantes 3, France
关键词
Proper Generalized Decomposition; Singular values; Tensor product Hilbert spaces; SPECTRAL DECOMPOSITION; COMPUTATIONAL STRATEGY; APPROXIMATION; SOLVERS; FAMILY; CHAOS; TIME; RANK;
D O I
10.1016/j.jmaa.2010.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Proper Generalized Decomposition (PGD) is a methodology initially proposed for the solution of partial differential equations (PDE) defined in tensor product spaces. It consists in constructing a separated representation of the solution of a given PDE. In this paper we consider the mathematical analysis of this framework for a larger class of problems in an abstract setting. In particular, we introduce a generalization of Eckart and Young theorem which allows to prove the convergence of the so-called progressive PGD for a large class of linear problems defined in tensor product Hilbert spaces. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:469 / 480
页数:12
相关论文
共 29 条
[1]   A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations [J].
Ammar, A. ;
Mokdad, B. ;
Chinesta, F. ;
Keunings, R. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2007, 144 (2-3) :98-121
[2]   A new family of solvers for some, classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids [J].
Ammar, A. ;
Mokdad, B. ;
Chinesta, F. ;
Keunings, R. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2006, 139 (03) :153-176
[3]   On the Convergence of a Greedy Rank-One Update Algorithm for a Class of Linear Systems [J].
Ammar, A. ;
Chinesta, F. ;
Falco, A. .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2010, 17 (04) :473-486
[4]   ON THE TENSOR SVD AND THE OPTIMAL LOW RANK ORTHOGONAL APPROXIMATION OF TENSORS [J].
Chen, Jie ;
Saad, Yousef .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (04) :1709-1734
[5]   Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models [J].
Chinesta, Francisco ;
Ammar, Amine ;
Cueto, Elias .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2010, 17 (04) :327-350
[6]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[7]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[8]   TENSOR RANK AND THE ILL-POSEDNESS OF THE BEST LOW-RANK APPROXIMATION PROBLEM [J].
de Silva, Vin ;
Lim, Lek-Heng .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) :1084-1127
[9]   A least-squares approximation of partial differential equations with high-dimensional random inputs [J].
Doostan, Alireza ;
Iaccarino, Gianluca .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (12) :4332-4345
[10]   A LATIN computational strategy for multiphysics problems:: application to poroelasticity [J].
Dureisseix, D ;
Ladevèze, P ;
Schrefler, BA .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 56 (10) :1489-1510