Inference-without-smoothing in the presence of nonparametric autocorrelation

被引:35
|
作者
Robinson, PM [1 ]
机构
[1] Univ London London Sch Econ & Polit Sci, Dept Econ, London WC2A 2AE, England
关键词
autocorrelation-consistent variance estimation; long range dependence; simultaneous equations systems;
D O I
10.2307/2999633
中图分类号
F [经济];
学科分类号
02 ;
摘要
In a number of econometric models, rules of large-sample inference require a consistent estimate of f(0), where f(lambda) is the spectral density matrix of y(t) = u(t) x x(t), for covariance stationary vectors u(t), x(t). Typically y(t) is allowed to have nonparametric autocorrelation, and smoothing is used in the estimation of f(0). We give conditions under which f(0) can be consistently estimated without smoothing. The conditions are relevant to inference on slope parameters in models with an intercept and strictly exogenous regressors, and allow regressors and disturbances to collectively have considerable stationary long memory and to satisfy only mild, in some cases minimal, moment conditions. The estimate of f(0) dominates smoothed ones in the sense that it can have mean squared error of order n(-1), where n is sample size. Under standard additional regularity conditions, we extend the estimate of f(0) to studentize asymptotically normal estimates of structural parameters in linear simultaneous equations systems. A small Monte Carlo study of finite sample behavior is included.
引用
收藏
页码:1163 / 1182
页数:20
相关论文
共 50 条
  • [21] Nonparametric predictive inference for reproducibility of basic nonparametric tests
    Coolen F.P.A.
    Bin Himd S.
    Journal of Statistical Theory and Practice, 2014, 8 (4) : 591 - 618
  • [22] AUTOCORRELATION ESTIMATION AND INFERENCE WITH SMALL SAMPLES
    HUITEMA, BE
    MCKEAN, JW
    PSYCHOLOGICAL BULLETIN, 1991, 110 (02) : 291 - 304
  • [23] Testing for local spatial autocorrelation in the presence of global autocorrelation
    Ord, JK
    Getis, A
    JOURNAL OF REGIONAL SCIENCE, 2001, 41 (03) : 411 - 432
  • [24] Adaptive Smoothing as Inference Strategy
    Welvaert, Marijke
    Tabelow, Karsten
    Seurinck, Ruth
    Rosseel, Yves
    NEUROINFORMATICS, 2013, 11 (04) : 435 - 445
  • [25] GRAPHICAL REPRESENTATION FOR NONPARAMETRIC INFERENCE
    HETTMANSPERGER, TP
    MCKEAN, JW
    AMERICAN STATISTICIAN, 1974, 28 (03): : 100 - 102
  • [26] Nonparametric inference on structural breaks
    Delgado, MA
    Hidalgo, J
    JOURNAL OF ECONOMETRICS, 2000, 96 (01) : 113 - 144
  • [27] Nonparametric predictive inference in reliability
    Coolen, FPA
    Coolen-Schrijner, P
    Yan, KJ
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2002, 78 (02) : 185 - 193
  • [28] Nonparametric inference for fractional diffusion
    Saussereau, Bruno
    BERNOULLI, 2014, 20 (02) : 878 - 918
  • [29] Nonparametric inference on mtDNA mismatches
    Banks, D
    Constantine, G
    Merriwether, DA
    LaFrance, R
    JOURNAL OF NONPARAMETRIC STATISTICS, 1999, 11 (1-3) : 215 - 232
  • [30] ERROR INFERENCE FOR NONPARAMETRIC REGRESSION
    RUTHERFORD, B
    YAKOWITZ, S
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1991, 43 (01) : 115 - 129