GRAPH MAPS WITH ZERO TOPOLOGICAL ENTROPY AND SEQUENCE ENTROPY PAIRS

被引:1
作者
Li, Jian [1 ]
Liang, Xianjuan [1 ]
Oprocha, Piotr [2 ,3 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Ostrava, IT4Innovat, Natl Supercomp Ctr, Inst Res & Applicat Fuzzy Modeling, 30 Dubna 22, Ostrava 70103, Czech Republic
关键词
Graph map; topological entropy; topological sequence entropy; tameness; Li-Yorke chaos; non-separable points; IN-pair; IT-pair; OMEGA-LIMIT SETS;
D O I
10.1090/proc/15578
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that graph map with zero topological entropy is Li-Yorke chaotic if and only if it has an NS-pair (a pair of non-separable points containing in a same solenoidal omega-limit set), and a non-diagonal pair is an NS-pair if and only if it is an IN-pair if and only if it is an IT-pair. This completes characterization of zero topological sequence entropy for graph maps.
引用
收藏
页码:4757 / 4770
页数:14
相关论文
共 31 条
[1]   A DISJOINTNESS THEOREM INVOLVING TOPOLOGICAL-ENTROPY [J].
BLANCHARD, F .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1993, 121 (04) :465-478
[2]  
Blokh, 1990, J SOVIET MATH, V48, P668
[3]  
Blokh, 1990, J SOVIET MATH, V49, P875
[4]   The space of omega-limit sets of a continuous map of the interval [J].
Blokh, A ;
Bruckner, AM ;
Humke, PD ;
Smital, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (04) :1357-1372
[5]  
Blokh A. M., 1982, USP MAT NAUK, V37, P175
[6]  
Blokh A.M., 1990, J. Sov. Math., V48, P500
[7]  
Blokh A.M, 1984, DIFFERENTIALDIFFEREN, V131, P3
[8]   POSITIVE SEQUENCE TOPOLOGICAL-ENTROPY CHARACTERIZES CHAOTIC MAPS [J].
FRANZOVA, N ;
SMITAL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) :1083-1086
[9]   Local entropy theory [J].
Glasner, Eli ;
Ye, Xiangdong .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 :321-356
[10]  
Glasner S., 2006, Colloq. Math., V105, P283, DOI DOI 10.4064/CM105-2-9