Nusselt number measurements for turbulent Rayleigh-Benard convection

被引:23
|
作者
Nikolaenko, A [1 ]
Ahlers, G
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, iQUEST, Santa Barbara, CA 93106 USA
关键词
D O I
10.1103/PhysRevLett.91.084501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present high-precision measurements of the Nusselt number N as a function of the Rayleigh number R for a cylindrical sample of water (Prandtl number sigma=4.4) of height Lsimilar or equal to50 cm and aspect ratio Gammaequivalent toD/Lsimilar or equal to1 (D is the diameter) for 3x10(9)less than or equal toRless than or equal to6x10(10). For Rsimilar or equal to3x10(9) the data are consistent with existing results for acetone (sigma=4.0, Rless than or equal to3x10(9)). There the measurements are also consistent with a model by Grossmann and Lohse (GL). As R increases, the measurements fall below the GL prediction. Near R=6x10(10) the prediction is 8% above the data.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Conductive heat flux in measurements of the Nusselt number in turbulent Rayleigh-Benard convection
    Shishkina, Olga
    Weiss, Stephan
    Bodenschatz, Eberhard
    PHYSICAL REVIEW FLUIDS, 2016, 1 (06):
  • [2] Rayleigh-Benard convection: Improved bounds on the Nusselt number
    Otto, Felix
    Seis, Christian
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (08)
  • [3] Radial boundary layer structure and Nusselt number in Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Verzicco, Roberto
    Lohse, Detlef
    JOURNAL OF FLUID MECHANICS, 2010, 643 : 495 - 507
  • [4] Turbulent Rayleigh-Benard convection for a Prandtl number of 0.67
    Ahlers, Guenter
    Bodenschatz, Eberhard
    Funfschilling, Denis
    Hogg, James
    JOURNAL OF FLUID MECHANICS, 2009, 641 : 157 - 167
  • [5] Time-dependent Rayleigh-Benard convection: Cell formation and Nusselt number
    Moon, Je-Young
    Chung, Bum-Jin
    NUCLEAR ENGINEERING AND DESIGN, 2014, 274 : 146 - 153
  • [6] Direct numerical simulation of Nusselt number scaling in rotating Rayleigh-Benard convection
    Kooij, G. L.
    Botchev, M. A.
    Geurts, B. J.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2015, 55 : 26 - 33
  • [7] Influence of Prandtl number on strongly turbulent Rayleigh-Benard convection
    Cioni, S
    Ciliberto, S
    Sommeria, J
    ADVANCES IN TURBULENCES VI, 1996, 36 : 219 - 222
  • [8] The turbulent regimes of Rayleigh-Benard convection
    Chavanne, X
    Chilla, F
    Castaing, B
    Chabaud, B
    Hebral, B
    Roche, P
    ADVANCES IN TURBULENCE VII, 1998, 46 : 461 - 464
  • [9] Asymmetries in Turbulent Rayleigh-Benard Convection
    du Puits, Ronald
    Resagk, Christian
    Thess, Andre
    PROGRESS IN TURBULENCE III, 2010, 131 : 179 - 182
  • [10] Turbulent superstructures in Rayleigh-Benard convection
    Pandey, Ambrish
    Scheel, Janet D.
    Schumacher, Joerg
    NATURE COMMUNICATIONS, 2018, 9