Synthesis of stabilizing antiwindup controllers using piecewise quadratic Lyapunov functions

被引:9
|
作者
Tiwari, Pradeep Y. [1 ]
Mulder, Eric R. [2 ]
Kothare, Mayuresh V. [1 ]
机构
[1] Lehigh Univ, Dept Chem Engn, Chem Proc Modeling & Control Ctr, Bethlehem, PA 18015 USA
[2] ExxonMobil Chem, Baytown, TX 77520 USA
关键词
actuator saturation; antiwindup; bilinear matrix inequalities (BMI); constrained control; optimal control; piecewise linear system;
D O I
10.1109/TAC.2007.910698
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of antiwindup controller synthesis based on the general antiwindup framework presented in Kothare et al. (Automatica, vol. 30, no. 12, pp. 1869-1883, 1994) applicable to linear time-invariant systems (LTI) subject to a saturating actuator. Our synthesis approach takes advantage of the fact that the antiwindup system is a piecewise affine system and thus, we can utilize piecewise quadratic Lyapunov function theory Johansson and Rantzer (IEEE Trans. Autom. Control, vol. 43, no. 4, pp. 555-559, Apr. 1998), Rantzer and Johansson (IEEE Trans. Autom. Control, vol. 45, no. 4, pp. 629-637, Apr. 2000), and Johansson (Proc. 14th World Congr., Beijing, China, 1999, pp. 521-5260) to determine a stabilizing antiwindup control law. The synthesis problem is expressed in terms of bi-linear matrix inequalities (BMIs) and is solved using an iterative approach as well as using commercial software. The performance of the system is optimized by minimizing an upper bound on the induced L-2 gain of the system. The proposed approach is demonstrated using examples.
引用
收藏
页码:2341 / 2345
页数:5
相关论文
共 50 条
  • [21] PIECEWISE QUADRATIC LYAPUNOV FUNCTIONS FOR STOCHASTIC DIFFERENTIAL EQUATIONS BY LINEAR PROGRAMMING
    Giesl, Peter
    Hafstein, Sigurdur
    Pokkakkillath, Sareena
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024,
  • [22] Piecewise quadratic Lyapunov functions for stability verification of approximate explicit MPC
    Hovd, Morten
    Olaru, Sorin
    MODELING IDENTIFICATION AND CONTROL, 2010, 31 (02) : 45 - 53
  • [23] Analysis of systems with saturation/deadzone via piecewise-quadratic Lyapunov functions
    Dai, Dan
    Hu, Tingshu
    Teel, Andrew R.
    Zaccarian, Luca
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 4304 - 4309
  • [24] Cone-Copositive Piecewise Quadratic Lyapunov Functions for Conewise Linear Systems
    Iervolino, Raffaele
    Vasca, Francesco
    Iannelli, Luigi
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (11) : 3077 - 3082
  • [25] CONSTRUCTION OF PIECEWISE-QUADRATIC LYAPUNOV FUNCTIONS FOR NONLINEAR CONTROL-SYSTEMS
    BOGATYREV, AV
    PYATNITSKII, ES
    AUTOMATION AND REMOTE CONTROL, 1987, 48 (10) : 1292 - 1299
  • [26] Piecewise quadratic Lyapunov functions over conical partitions for robust stability analysis
    Ambrosino, Roberto
    Garone, Emanuele
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2015, 25 (14) : 2348 - 2361
  • [27] On quadratic Lyapunov functions
    Cheng, DZ
    Guo, L
    Huang, J
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (05) : 885 - 890
  • [28] LYAPUNOV DESIGN OF STABILIZING CONTROLLERS FOR CASCADED SYSTEMS
    PRALY, L
    DANDREANOVEL, B
    CORON, JM
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (10) : 1177 - 1181
  • [29] Synthesis of Stabilizing Model Predictive Controllers via Canonical Piecewise Affine Approximations
    Bemporad, Alberto
    Oliveri, Alberto
    Poggi, Tomaso
    Storace, Marco
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 5296 - 5301
  • [30] DESIGN OF ADAPTIVE CONTROLLERS USING THE METHOD OF LYAPUNOV FUNCTIONS
    AKSENOV, GS
    FOMIN, VN
    AUTOMATION AND REMOTE CONTROL, 1982, 43 (06) : 805 - 815