Boundary scattering effect on the thermal conductivity of nanowires

被引:10
作者
Zhou, Yanguang [1 ]
Yao, Yagang [2 ]
Hu, Ming [1 ,3 ]
机构
[1] Rhein Westfal TH Aachen, Aachen Inst Adv Study Computat Engn Sci AICES, D-52062 Aachen, Germany
[2] Univ Chinese Acad Sci, Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Div Adv Nanomat,Key Lab Nanodevices & Applicat, Suzhou 215123, Peoples R China
[3] Rhein Westfal TH Aachen, Inst Mineral Engn, Fac Georesources & Mat Engn, Div Mat Sci & Engn, D-52064 Aachen, Germany
基金
美国国家科学基金会;
关键词
boundary scattering; surface orientation; thermal conductivity; nanowires; molecular dynamics; Boltzmann transport equation; normal mode analysis; SILICON NANOWIRES; MOLECULAR-DYNAMICS; THERMOELECTRIC-MATERIALS; SPATIAL CONFINEMENT; CONTROLLED GROWTH; ACOUSTIC PHONONS; QUANTUM WIRES; ORIENTATION; TRANSPORT; DEPENDENCE;
D O I
10.1088/0268-1242/31/7/074004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tuning the surface boundary structures of crystal nanowires (NWs) is one of the most popular ways to control the thermal conductivity of NWs. In this paper, non-equilibrium molecular dynamic simulations (NEMD) and time domain normal mode analysis (TDNMA) are performed to investigate the thermal transport properties of Ar (length of 52.9 nm, width of 4.23 nm) and Ge (56.5 nm long and 4.52 nm wide) NWs with different surface boundary structures. Results show that both the total and modal thermal conductivity have a dramatic difference among the NWs with the same diameter (the maximal and minimal thermal conductivity of Ar (Ge) NWs are 1.25 (15.3) and 0.60 (5.64) W/mK, respectively), which suggests the efficiency of nanoscale thermoelectric devices and heat dissipation devices can be largely tuned by only changing the boundary orientation. The fundamental mechanism responsible for such a discrepancy is found to mainly originate from different phonon group velocity (combined with phonon relaxation time for Ar NWs). The results are quite helpful for understanding the boundary scattering effect on thermal transport and also facilitating the design of nanoscale devices by tailoring the boundary structures.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes [J].
Aksamija, Z. ;
Knezevic, I. .
PHYSICAL REVIEW B, 2010, 82 (04)
[2]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[3]  
CATTANEO C, 1958, CR HEBD ACAD SCI, V247, P431
[4]   Phonon hydrodynamics in two-dimensional materials [J].
Cepellotti, Andrea ;
Fugallo, Giorgia ;
Paulatto, Lorenzo ;
Lazzeri, Michele ;
Mauri, Francesco ;
Marzari, Nicola .
NATURE COMMUNICATIONS, 2015, 6
[5]   Thermal conductance of thin silicon nanowires [J].
Chen, Renkun ;
Hochbaum, Allon I. ;
Murphy, Padraig ;
Moore, Joel ;
Yang, Peidong ;
Majumdar, Arun .
PHYSICAL REVIEW LETTERS, 2008, 101 (10)
[6]   From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures [J].
de Tomas, C. ;
Cantarero, A. ;
Lopeandia, A. F. ;
Alvarez, F. X. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (16)
[7]   Thermoelectric cooling and power generation [J].
DiSalvo, FJ .
SCIENCE, 1999, 285 (5428) :703-706
[8]   Temperature Dependence of the Thermal Conductivity of Thin Silicon Nanowires [J].
Donadio, Davide ;
Galli, Giulia .
NANO LETTERS, 2010, 10 (03) :847-851
[9]   Atomistic Simulations of Heat Transport in Silicon Nanowires [J].
Donadio, Davide ;
Galli, Giulia .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)
[10]   Ab initio variational approach for evaluating lattice thermal conductivity [J].
Fugallo, Giorgia ;
Lazzeri, Michele ;
Paulatto, Lorenzo ;
Mauri, Francesco .
PHYSICAL REVIEW B, 2013, 88 (04)