Commutators of trace zero matrices over principal ideal rings

被引:2
作者
Stasinski, Alexander [1 ]
机构
[1] Univ Durham, Dept Math Sci, South Rd, Durham DH1 3LE, England
关键词
D O I
10.1007/s11856-018-1762-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for every trace zero square matrix A of size at least 3 over a principal ideal ring R, there exist trace zero matrices X, Y over R such that XY - YX = A. Moreover, we show that X can be taken to be regular mod every maximal ideal of R. This strengthens our earlier result that A is a commutator of two matrices (not necessarily of trace zero), and in addition, the present proof is simpler than the earlier one.
引用
收藏
页码:211 / 227
页数:17
相关论文
共 8 条
[1]  
Albert A.A., 1957, Mich. Math. J., V4, P1
[2]  
[Anonymous], 1961, Trans. Amer. Math. Soc, DOI DOI 10.2307/1993498
[3]  
[Anonymous], 1989, Contemp. Math, DOI DOI 10.1090/CONM/083/991989
[4]   LINEAR-EQUATIONS OVER COMMUTATIVE RINGS AND DETERMINANTAL IDEALS [J].
HERMIDA, JA ;
SANCHEZGIRALDA, T .
JOURNAL OF ALGEBRA, 1986, 99 (01) :72-79
[5]  
LAFFEY TJ, 1994, LINEAR ALGEBRA APPL, V198, P671
[6]  
Pazzis CD, 2014, ELECTRON J LINEAR AL, V27, P39
[7]   SIMILARITY AND COMMUTATORS OF MATRICES OVER PRINCIPAL IDEAL RINGS [J].
Stasinski, Alexander .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (04) :2333-2354
[8]   MATRICES WITH ZERO TRACE [J].
THOMPSON, RC .
ISRAEL JOURNAL OF MATHEMATICS, 1966, 4 (01) :33-&