Explicit Noether-Lefschetz for arbitrary threefolds

被引:5
|
作者
Lopez, Angelo Felice
Maclean, Catriona
机构
[1] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
[2] Univ Grenoble 1, UFR Math, CNRS, UMR 5582, F-38402 St Martin Dheres, France
关键词
D O I
10.1017/S0305004107000126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Noether-Lefschetz locus of a very ample line bundle L on an arbitrary smooth threefold Y. Building on results of Green, Voisin and Otwinowska, we give explicit bounds, depending only on the Castelnuovo-Mumford regularity properties of L, on the codimension of the components of the Noether-Lefschetz locus of | L|.
引用
收藏
页码:323 / 342
页数:20
相关论文
共 50 条
  • [1] On the codimension of Noether-Lefschetz loci for toric threefolds
    Lanza, Valeriano
    Martino, Ivan
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (05)
  • [2] The Noether-Lefschetz locus of surfaces in toric threefolds
    Bruzzo, Ugo
    Grassi, Antonella
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (05)
  • [3] THE NOETHER-LEFSCHETZ THEOREM IN ARBITRARY CHARACTERISTIC
    Ji, Lena
    JOURNAL OF ALGEBRAIC GEOMETRY, 2024, 33 (03) : 567 - 600
  • [4] A NEW PROOF OF THE EXPLICIT NOETHER-LEFSCHETZ THEOREM
    GREEN, ML
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1988, 27 (01) : 155 - 159
  • [5] Existence and Density of General Components of the Noether-Lefschetz Locus on Normal Threefolds
    Bruzzo, Ugo
    Grassi, Antonella
    Lopez, Angelo Felice
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (17) : 13416 - 13433
  • [6] On a problem of Noether-Lefschetz type
    Amerik, E
    COMPOSITIO MATHEMATICA, 1998, 112 (03) : 255 - 271
  • [7] The Noether-Lefschetz conjecture and generalizations
    Bergeron, Nicolas
    Li, Zhiyuan
    Millson, John
    Moeglin, Colette
    INVENTIONES MATHEMATICAE, 2017, 208 (02) : 501 - 552
  • [8] GROTHENDIECK-LEFSCHETZ AND NOETHER-LEFSCHETZ FOR BUNDLES
    Ravindra, G., V
    Tripathi, Amit
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (12) : 5025 - 5034
  • [9] Developments in Noether-Lefschetz theory
    Brevik, John
    Nollet, Scott
    HODGE THEORY, COMPLEX GEOMETRY, AND REPRESENTATION THEORY, 2014, 608 : 21 - 50
  • [10] The Noether-Lefschetz conjecture and generalizations
    Nicolas Bergeron
    Zhiyuan Li
    John Millson
    Colette Moeglin
    Inventiones mathematicae, 2017, 208 : 501 - 552