PGAN:A Generative Adversarial Network based Anomaly Detection Method for Network Intrusion Detection System

被引:2
作者
Li, Zeyi [1 ]
Wang, Yun [1 ]
Wang, Pan [1 ]
Su, Haorui [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Modern Posts, Nanjing, Peoples R China
[2] Xian Jiaotong Liverpool Univ, Dept Informat & Comp Sci, Suzhou, Peoples R China
来源
2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021) | 2021年
关键词
Anomaly detection; Intrusion Detection System; Generative Adversarial Network; Unsupervised learning; Traffic identification;
D O I
10.1109/TrustCom53373.2021.00107
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rapid development of communication network, the types and quantities of network traffic data have increased substantially. What followed was the frequent occurrence of versatile cyber attacks. As an important part of network security, the network-based intrusion detection system (NIDS) can monitor and protect the network equippments and terminals in real time. The traditional detection methods based on deep learning (DL) are always in supervised manners in NIDS, which can automatically build end-to-end detection model without manual feature extraction and selection by domain experts. However, supervised learning methods require large-scale labeled data, yet capturing large labeled datasets is a very cubersome, tedious and time-consuming manual task. Instead, unsupervised learning is an effective way to overcome this problem. Nonetheless, the existing unsupervised methods are prone to low detection efficiency and are difficult to train. In this paper we propose a novel NIDS method called PGAN based on generative adversarial network (GAN) to detect the abnormal traffic from the perspective of Anomaly Detection, which leverage the competitive speciality of adversarial training to learn the normal traffic. Based on the public dataset CICIDS2017, three experimental results show that PGAN can significantly outperform other unsupervised methods like stacked autoencoder (SAE) and isolation forest (IF).
引用
收藏
页码:734 / 741
页数:8
相关论文
共 50 条
  • [31] IWGAN: Anomaly Detection in Airport Based on Improved Wasserstein Generative Adversarial Network
    Huang, Ko-Wei
    Chen, Guan-Wei
    Huang, Zih-Hao
    Lee, Shih-Hsiung
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [32] Video Anomaly Detection Using Dual Discriminator Based Generative Adversarial Network
    Xu, Jiaqi
    Miao, Zhenjiang
    Xu, Wanru
    Wang, Jiaji
    Zhang, Qiang
    Song, Shaoyue
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1259 - 1265
  • [33] MAHALANOBIS DISTANCE BASED ADVERSARIAL NETWORK FOR ANOMALY DETECTION
    Hou, Yubo
    Chen, Zhenghua
    Wu, Min
    Foo, Chuan-Sheng
    Li, Xiaoli
    Shubair, Raed M.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3192 - 3196
  • [34] LSTM for Anomaly-Based Network Intrusion Detection
    Althubiti, Sara A.
    Jones, Eric Marcell, Jr.
    Roy, Kaushik
    2018 28TH INTERNATIONAL TELECOMMUNICATION NETWORKS AND APPLICATIONS CONFERENCE (ITNAC), 2018, : 293 - 295
  • [35] MANDA: On Adversarial Example Detection for Network Intrusion Detection System
    Wang, Ning
    Chen, Yimin
    Xiao, Yang
    Hu, Yang
    Lou, Wenjing
    Hou, Y. Thomas
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (02) : 1139 - 1153
  • [36] STemGAN: spatio-temporal generative adversarial network for video anomaly detection
    Rituraj Singh
    Krishanu Saini
    Anikeit Sethi
    Aruna Tiwari
    Sumeet Saurav
    Sanjay Singh
    Applied Intelligence, 2023, 53 : 28133 - 28152
  • [37] Anomaly Detection of Deepfake Audio Based on Real Audio Using Generative Adversarial Network Model
    Song, Daeun
    Lee, Nayoung
    Kim, Jiwon
    Choi, Eunjung
    IEEE ACCESS, 2024, 12 : 184311 - 184326
  • [38] STemGAN: spatio-temporal generative adversarial network for video anomaly detection
    Singh, Rituraj
    Saini, Krishanu
    Sethi, Anikeit
    Tiwari, Aruna
    Saurav, Sumeet
    Singh, Sanjay
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28133 - 28152
  • [39] Generative Adversarial Network Models for Anomaly Detection in Software-Defined Networks
    Zacaron, Alexandro Marcelo
    Lent, Daniel Matheus Brandao
    da Silva Ruffo, Vitor Gabriel
    Carvalho, Luiz Fernando
    Proenca Jr, Mario Lemes
    JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2024, 32 (04)
  • [40] Fast Anomaly Detection based on Data Stream in Network Intrusion Detection System
    Yang, Yihong
    Xu, Xiaolong
    Wang, Lina
    Zhong, Weiyi
    Yan, Chao
    Qi, Lianyong
    PROCEEDINGS OF ACM TURING AWARD CELEBRATION CONFERENCE, ACM TURC 2021, 2021, : 87 - 91