Vortex-induced vibration of a variable tension riser

被引:0
|
作者
Josefsson, Per M. [1 ]
Dalton, Charles [1 ]
机构
[1] Univ Houston, Houston, TX 77004 USA
关键词
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The transverse vibratory response of a long, slender vertical top-tension riser, subject to an ocean current, is studied. The problem is treated as a coupled fluid-flow/vibration problem which is solved numerically. The fluid flow part is represented by the 2-D Navier-Stokes equations, with LES and strip theory, which are solved numerically to obtain the flow field and determine the vortex-shedding behavior in the flow. The approach flow is a shear flow ranging in Reynolds number from 8000 to 10,000. Given the flow field and vortexshedding behavior, the transverse fluid forcing function can be determined at a given instant, which becomes the input to the Euler-Bernoulli beam equation to calculate the displacement of the riser, using a technique that involves the WKB method and modal decomposition. The boundary conditions for the fluid-flow equations are updated each time step as the cylinder moves. The natural frequency of the riser is tension-dominated, not bending stiffnessdominated. With the decrease in tension with increasing depth, the natural frequency is affected. Therefore, the solution will be influenced by the depth-dependent tension. This study has indicated some interesting features regarding the VIV of a variable-tension riser. The vibrational response is greater for a variable-tension riser than for a constant-tension riser, when the variable-tension riser is assumed to have the same top tension as the constant-tension riser. Therefore, it is important to take into account the variable tension when estimating fatigue failures of marine risers.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 50 条
  • [21] Experimental investigation on vortex-induced vibration of steel catenary riser
    Fan Yu-ting
    Mao Hai-ying
    Guo Hai-yan
    Liu Qing-hai
    Li Xiao-min
    CHINA OCEAN ENGINEERING, 2015, 29 (05) : 691 - 704
  • [22] An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration
    Song, Leijian
    Fu, Shixiao
    Cao, Jing
    Ma, Leixin
    Wu, Jianqiao
    JOURNAL OF FLUIDS AND STRUCTURES, 2016, 63 : 325 - 350
  • [23] Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models
    Chen, Zheng-Shou
    Kim, Wu-Joan
    INTERNATIONAL JOURNAL OF NAVAL ARCHITECTURE AND OCEAN ENGINEERING, 2010, 2 (02) : 112 - 118
  • [24] Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser
    Chaplin, JR
    Bearman, PW
    Cheng, Y
    Fontaine, E
    Graham, JMR
    Herfjord, K
    Huera-Huarte, FJ
    Isherwood, M
    Lambrakos, K
    Larsen, CM
    Meneghini, JR
    Moe, G
    Pattenden, R
    Triantafyllo, MS
    Willden, RHJ
    JOURNAL OF FLUIDS AND STRUCTURES, 2005, 21 (01) : 25 - 40
  • [25] Vortex-induced vibrations of a vertical riser with time-varying tension
    Thorsen, Mats Jorgen
    Saevik, Svein
    X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 1326 - 1331
  • [27] Vortex-induced vibration fatigue characteristic of deepwater aluminum alloy riser
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban), 2008, 1 (100-104):
  • [28] Vortex-induced vibration mechanism of drilling riser under shear flow
    Mao Liangjie
    Liu Qingyou
    Zhou Shouwei
    Jiang Wei
    Liu Zhengli
    Peng Tao
    PETROLEUM EXPLORATION AND DEVELOPMENT, 2015, 42 (01) : 112 - 118
  • [29] Numerical Simulation of a Large-scale Riser with Vortex-induced Vibration
    Chen, Zhengshou
    Kim, Wu-Joan
    Yu, Dingyong
    Choi, Jong-Su
    Hong, Sup
    PROCEEDINGS OF THE EIGHTH (2008) ISOPE PACIFIC/ASIA OFFSHORE MECHANICS SYMPOSIUM: PACOMS-2008, 2008, : 121 - +
  • [30] Reduced-order modelling of vortex-induced vibration of catenary riser
    Srinil, Narakorn
    Wiercigroch, Marian
    O'Brien, Patrick
    OCEAN ENGINEERING, 2009, 36 (17-18) : 1404 - 1414