On the Faria's inequality for the Laplacian and signless Laplacian spectra: A unified approach

被引:8
作者
Andrade, Enide [1 ]
Cardoso, Domingos M. [1 ]
Pasten, Germain [2 ]
Rojo, Oscar [2 ]
机构
[1] Univ Aveiro, CIDMA, Dept Matemat, P-3800 Aveiro, Portugal
[2] Univ Catolica Norte, Dept Matemat, Antofagasta, Chile
关键词
Spectral graph theory; Laplacian spectrum of a graph; Sign less Laplacian spectrum of a graph;
D O I
10.1016/j.laa.2015.01.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p(G) and q(G) be the number of pendant vertices and quasi-pendant vertices of a simple undirected graph G, respectively. Let m(L)+/-((G)) (1) be the multiplicity of 1 as eigenvalue of a matrix which can be either the Laplacian or the signless Laplacian of a graph G. A result due to I. Faria states that m(L) +/-((G))(1) is bounded below by p(G) - q(G). Let r(G) be the number of internal vertices of G. If r(G) = q(G), following a unified approach we prove that m(L) +/- ((G)) (1) = p(G) - q(G). If r(G) > q(G) then we determine the equality m(L) +/- ((G)) (1) = p(G) - q(G)-m(N) +/- (1), where m(N) +/- (1) denotes the multiplicity of 1 as eigenvalue of a matrix N-+/-. This matrix is obtained from either the Laplacian or signless Laplacian matrix of the subgraph induced by the internal vertices which are nonquasi-pendant vertices. Furthermore, conditions for 1 to be an eigenvalue of a principal submatrix are deduced and applied to some families of graphs. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 96
页数:16
相关论文
共 9 条
  • [1] On trees with Laplacian eigenvalue one
    Barik, S.
    Lal, A. K.
    Pati, S.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (06) : 597 - 610
  • [2] The number of nets of the regular convex polytopes in dimension≤4
    Buekenhout, F
    Parker, M
    [J]. DISCRETE MATHEMATICS, 1998, 186 (1-3) : 69 - 94
  • [3] Signless Laplacians of finite graphs
    Cvetkovic, Dragos
    Rowlinson, Peter
    Simic, Slobodan K.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 155 - 171
  • [4] PERMANENTAL ROOTS AND THE STAR DEGREE OF A GRAPH
    FARIA, I
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 64 (JAN) : 255 - 265
  • [5] Golub GH., 2013, Matrix Computations
  • [6] THE LAPLACIAN SPECTRUM OF A GRAPH
    GRONE, R
    MERRIS, R
    SUNDER, VS
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) : 218 - 238
  • [7] ON THE MULTIPLICITY OF LAPLACIAN EIGENVALUES OF GRAPHS
    Guo, Ji-Ming
    Feng, Lin
    Zhang, Jiong-Ming
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) : 689 - 698
  • [8] Rojo O, 2009, ELECTRON J LINEAR AL, V18, P30
  • [9] Varga R. S., 2000, SPRINGER SER COMPUT, V27