Control over Electrochemical CO2 Reduction Selectivity by Coordination Engineering of Tin Single-Atom Catalysts

被引:109
作者
Guo, Jiangyi [1 ]
Zhang, Wenlin [1 ]
Zhang, Lu-Hua [1 ]
Chen, Datong [1 ]
Zhan, Jiayu [1 ]
Wang, Xueli [1 ]
Shiju, N. Raveendran [2 ]
Yu, Fengshou [1 ]
机构
[1] Hebei Univ Technol, Tianjin Key Lab Chem Proc Safety, Natl Local Joint Engn Lab Energy Conservat Chem P, Sch Chem Engn & Technol, Tianjin 300130, Peoples R China
[2] Univ Amsterdam, Vant Hoff Inst Mol Sci, POB 94157, NL-1090 GD Amsterdam, Netherlands
基金
中国国家自然科学基金;
关键词
asymmetric SnN3O1 configuration; CO selectivity; CO2 reduction reaction; electrochemistry; single-atom catalysts; CARBON-DIOXIDE; ELECTROCATALYST; CONVERSION; SITES;
D O I
10.1002/advs.202102884
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon-based single-atom catalysts (SACs) with well-defined and homogeneously dispersed metal-N-4 moieties provide a great opportunity for CO2 reduction. However, controlling the binding strength of various reactive intermediates on catalyst surface is necessary to enhance the selectivity to a desired product, and it is still a challenge. In this work, the authors prepared Sn SACs consisting of atomically dispersed SnN3O1 active sites supported on N-rich carbon matrix (Sn-NOC) for efficient electrochemical CO2 reduction. Contrary to the classic Sn-N-4 configuration which gives HCOOH and H-2 as the predominant products, Sn-NOC with asymmetric atomic interface of SnN3O1 gives CO as the exclusive product. Experimental results and density functional theory calculations show that the atomic arrangement of SnN3O1 reduces the activation energy for *COO and *COOH formation, while increasing energy barrier for HCOO* formation significantly, thereby facilitating CO2-to-CO conversion and suppressing HCOOH production. This work provides a new way for enhancing the selectivity to a specific product by controlling individually the binding strength of each reactive intermediate on catalyst surface.
引用
收藏
页数:7
相关论文
共 35 条
[1]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[2]   Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level [J].
Chen, Zhipeng ;
Zhang, Xinxin ;
Liu, Wei ;
Jiao, Mingyang ;
Mou, Kaiwen ;
Zhang, Xiangping ;
Liu, Licheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (04) :2349-2356
[3]   Fe1N4-O1 site with axial Fe-O coordination for highly selective CO2 reduction over a wide potential range [J].
Chen, Zhiqiang ;
Huang, Aijian ;
Yu, Ke ;
Cui, Tingting ;
Zhuang, Zewen ;
Liu, Shoujie ;
Li, Jianzhan ;
Tu, Renyong ;
Sun, Kaian ;
Tan, Xin ;
Zhang, Jiaqi ;
Liu, Di ;
Zhang, Yu ;
Jiang, Peng ;
Pan, Yuan ;
Chen, Chen ;
Peng, Qing ;
Li, Yadong .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (06) :3430-3437
[4]   Microwave-Assisted Rapid Synthesis of Graphene-Supported Single Atomic Metals [J].
Fei, Huilong ;
Dong, Juncai ;
Wan, Chengzhang ;
Zhao, Zipeng ;
Xu, Xiang ;
Lin, Zhaoyang ;
Wang, Yiliu ;
Liu, Haotian ;
Zang, Ketao ;
Luo, Jun ;
Zhao, Shenglong ;
Hu, Wei ;
Yan, Wensheng ;
Shakir, Imran ;
Huang, Yu ;
Duan, Xiangfeng .
ADVANCED MATERIALS, 2018, 30 (35)
[5]   Atomic cobalt on nitrogen-doped graphene for hydrogen generation [J].
Fei, Huilong ;
Dong, Juncai ;
Arellano-Jimenez, M. Josefina ;
Ye, Gonglan ;
Kim, Nam Dong ;
Samuel, Errol L. G. ;
Peng, Zhiwei ;
Zhu, Zhuan ;
Qin, Fan ;
Bao, Jiming ;
Yacaman, Miguel Jose ;
Ajayan, Pulickel M. ;
Chen, Dongliang ;
Tour, James M. .
NATURE COMMUNICATIONS, 2015, 6
[6]   Potential Dependence of the Local pH in a CO2 Reduction Electrolyzer [J].
Henckel, Danielle A. ;
Counihan, Michael J. ;
Holmes, Hannah E. ;
Chen, Xinyi ;
Nwabara, Uzoma O. ;
Verma, Sumit ;
Rodriguez-Lopez, Joaquin ;
Kenis, Paul J. A. ;
Gewirth, Andrew A. .
ACS CATALYSIS, 2021, 11 (01) :255-263
[7]   Gas Phase Electrolysis of Carbon Dioxide to Carbon Monoxide Using Nickel Nitride as the Carbon Enrichment Catalyst [J].
Hou, Pengfei ;
Wang, Xiuping ;
Wang, Zhuo ;
Kang, Peng .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (44) :38024-38031
[8]   Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2 [J].
Ju, Wen ;
Bagger, Alexander ;
Hao, Guang-Ping ;
Sofia Varela, Ana ;
Sinev, Ilya ;
Bon, Volodymyr ;
Roldan Cuenya, Beatriz ;
Kaskel, Stefan ;
Rossmeisl, Jan ;
Strasser, Peter .
NATURE COMMUNICATIONS, 2017, 8
[9]   Isolated Ni single atoms in nitrogen doped ultrathin porous carbon templated from porous g-C3N4 for high-performance CO2 reduction [J].
Lu, Yan ;
Wang, Haojing ;
Yu, Pengfei ;
Yuan, Yifei ;
Shahbazian-Yassar, Reza ;
Sheng, Yuan ;
Wu, Shuyang ;
Tu, Wenguang ;
Liu, Guanyu ;
Kraft, Markus ;
Xu, Rong .
NANO ENERGY, 2020, 77
[10]   Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films [J].
Mattevi, Cecilia ;
Eda, Goki ;
Agnoli, Stefano ;
Miller, Steve ;
Mkhoyan, K. Andre ;
Celik, Ozgur ;
Mastrogiovanni, Daniel ;
Granozzi, Gaetano ;
Garfunkel, Eric ;
Chhowalla, Manish .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (16) :2577-2583