Morita equivalence and spectral triples on noncommutative orbifolds

被引:0
|
作者
Harju, Antti J. [1 ,2 ]
机构
[1] Univ Helsinki, FIN-00014 Helsinki, Finland
[2] QMU, London, England
关键词
Morita equivalence; Spectral triple; Orbifold;
D O I
10.1016/j.geomphys.2016.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group. Noncommutative geometry of unital G-algebras is studied. A geometric structure is determined by a spectral triple on the crossed" product algebra associated with the group action. This structure is to be viewed as a representative of a noncommutative orbifold. Based on a study of classical orbifold groupoids, a Morita equivalence for the crossed product spectral triples is developed. Noncommutative orbifolds are Morita equivalence classes of the crossed product spectral triples. As a special case of this Morita theory one can study freeness of the G-action on the noncommutative level. In the case of a free action, the crossed product formalism reduced to the usual spectral triple formalism on the algebra of G-invariant functions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:367 / 382
页数:16
相关论文
共 50 条
  • [21] Poisson geometry and Morita equivalence
    Bursztyn, Henrique
    Weinstein, Alan
    POISSON GEOMETRY, DEFORMATION QUANTISATION AND GROUP REPRESENTATIONS, 2005, 323 : 1 - +
  • [22] Morita equivalence for factorisable semigroups
    Chen, YQ
    Shum, KP
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (03): : 437 - 454
  • [23] Modular Curvature and Morita Equivalence
    Matthias Lesch
    Henri Moscovici
    Geometric and Functional Analysis, 2016, 26 : 818 - 873
  • [24] Tracing projective modules over noncommutative orbifolds
    Chakraborty, Sayan
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2023, 17 (02) : 385 - 406
  • [25] Hausdorff Morita equivalence of singular foliations
    Alfonso Garmendia
    Marco Zambon
    Annals of Global Analysis and Geometry, 2019, 55 : 99 - 132
  • [26] ISOMORPHISM AND MORITA EQUIVALENCE OF GRAPH ALGEBRAS
    Abrams, Gene
    Tomforde, Mark
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (07) : 3733 - 3767
  • [27] Categorical quasivarieties via Morita equivalence
    Kearnes, KA
    JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (02) : 839 - 856
  • [28] A Morita equivalence for Hilbert C*-modules
    Joita, Maria
    Moslehian, Mohammad Sal
    STUDIA MATHEMATICA, 2012, 209 (01) : 11 - 19
  • [29] Hausdorff Morita equivalence of singular foliations
    Garmendia, Alfonso
    Zambon, Marco
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 55 (01) : 99 - 132
  • [30] MORITA EQUIVALENCE OF FINITELY PRESENTED ALGEBRAS
    Alahmadi, Adel
    Alsulami, Hamed
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (11) : 4577 - 4579