Morita equivalence and spectral triples on noncommutative orbifolds

被引:0
|
作者
Harju, Antti J. [1 ,2 ]
机构
[1] Univ Helsinki, FIN-00014 Helsinki, Finland
[2] QMU, London, England
关键词
Morita equivalence; Spectral triple; Orbifold;
D O I
10.1016/j.geomphys.2016.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group. Noncommutative geometry of unital G-algebras is studied. A geometric structure is determined by a spectral triple on the crossed" product algebra associated with the group action. This structure is to be viewed as a representative of a noncommutative orbifold. Based on a study of classical orbifold groupoids, a Morita equivalence for the crossed product spectral triples is developed. Noncommutative orbifolds are Morita equivalence classes of the crossed product spectral triples. As a special case of this Morita theory one can study freeness of the G-action on the noncommutative level. In the case of a free action, the crossed product formalism reduced to the usual spectral triple formalism on the algebra of G-invariant functions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:367 / 382
页数:16
相关论文
共 50 条
  • [11] On connections between Morita semigroups and strong Morita equivalence
    Lepik, Alvin
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (05) : 1862 - 1873
  • [12] Fair semigroups and Morita equivalence
    Valdis Laan
    László Márki
    Semigroup Forum, 2016, 92 : 633 - 644
  • [13] Morita Equivalence for Factorisable Semigroups
    Yu Qun Chen
    K. P. Shum
    Acta Mathematica Sinica, 2001, 17 : 437 - 454
  • [14] Morita equivalence of finite semigroups
    Ülo Reimaa
    Valdis Laan
    Lauri Tart
    Semigroup Forum, 2021, 102 : 842 - 860
  • [15] Fair semigroups and Morita equivalence
    Laan, Valdis
    Marki, Laszlo
    SEMIGROUP FORUM, 2016, 92 (03) : 633 - 644
  • [16] Morita equivalence of factorizable semigroups
    Laan, Valdis
    Reimaat, Ulo
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (04) : 723 - 741
  • [17] Morita Equivalence for Rings with Involution
    Ara P.
    Algebras and Representation Theory, 1999, 2 (3) : 227 - 247
  • [18] Morita Equivalence for Factorisable Semigroups
    Yu Qun CHEN Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2001, 17 (03) : 437 - 454
  • [19] Morita equivalence of finite semigroups
    Reimaa, Ulo
    Laan, Valdis
    Tart, Lauri
    SEMIGROUP FORUM, 2021, 102 (03) : 842 - 860
  • [20] Morita equivalence for graded rings
    Abrams, Gene
    Ruiz, Efren
    Tomforde, Mark
    JOURNAL OF ALGEBRA, 2023, 617 : 79 - 112