IMAGE SEGMENTATION BY A ROBUST GENERALIZED FUZZY C-MEANS ALGORITHM

被引:0
|
作者
Zhang, Hui [1 ,2 ]
Wu, Q. M. Jonathan [1 ]
Thanh Minh Nguyen [1 ]
机构
[1] Univ Windsor, Dept Elect & Comp Engn, Windsor, ON N9B 3P4, Canada
[2] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing, Jiangsu, Peoples R China
来源
2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013) | 2013年
关键词
Fuzzy C-Means; Generalized Mean; Image segmentation; Spatial constraints; MODELS;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Fuzzy c-means (FCM) has been considered as an effective algorithm for image segmentation. However, it lacks of sufficient robustness to image noise. In this paper, we propose a simple and effective method to make the traditional FCM more robust to noise, with the help of generalized mean. Traditional FCM can be considered as a linear combination of membership and distance (function) from the expression of its mathematical formula. The proposed generalized FCM (GFCM) is generated by applying generalized mean on these two items. We impose generalized mean on membership to incorporate local spatial information and cluster information, and on distance function to incorporate local spatial information and observation information (image intensity value). Thus, our GFCM is more robust to image noise with the spatial constraints: the generalized mean. The performance of our proposed algorithm, compared with state-of-the-art technologies including modified FCM, HMRF and their hybrid models, demonstrates its improved robustness and effectiveness.
引用
收藏
页码:4024 / 4028
页数:5
相关论文
共 50 条
  • [21] An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities
    Pham, DL
    Prince, JL
    PATTERN RECOGNITION LETTERS, 1999, 20 (01) : 57 - 68
  • [22] An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities
    Pham, DL
    Prince, JL
    MEDICAL IMAGING 1998: IMAGE PROCESSING, PTS 1 AND 2, 1998, 3338 : 555 - 563
  • [23] A FAST ANTI-NOISE FUZZY C-MEANS ALGORITHM FOR IMAGE SEGMENTATION
    Zheng, Fuhua
    Zhang, Caiming
    Zhang, Xiaofeng
    Liu, Yi
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2728 - 2732
  • [24] A novel kernelized fuzzy C-means algorithm with application in medical image segmentation
    Zhang, DQ
    Chen, SC
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2004, 32 (01) : 37 - 50
  • [25] Fuzzy c-means image segmentation algorithm based on chaotic simulated annealing
    Yang, Qing
    Wang, Zhiqiang
    Xu, Yan
    ADVANCED DEVELOPMENT IN AUTOMATION, MATERIALS AND MANUFACTURING, 2014, 624 : 536 - 539
  • [26] Fuzzy c-means clustering algorithm with a novel penalty term for image segmentation
    Yang, Y
    Zheng, C
    Lin, P
    OPTO-ELECTRONICS REVIEW, 2005, 13 (04) : 309 - 315
  • [27] Image segmentation by fuzzy c-means clustering algorithm with a novel penalty term
    Yang, Yong
    Huang, Shuying
    COMPUTING AND INFORMATICS, 2007, 26 (01) : 17 - 31
  • [28] Food image segmentation using an improved kernel fuzzy c-means algorithm
    Du, C.-J
    Sun, D.-W.
    TRANSACTIONS OF THE ASABE, 2007, 50 (04): : 1341 - 1348
  • [29] Fuzzy c-means clustering algorithm with deformable spatial information for image segmentation
    Hang Zhang
    Jian Liu
    Multimedia Tools and Applications, 2022, 81 : 11239 - 11258
  • [30] Fuzzy c-means clustering algorithm with deformable spatial information for image segmentation
    Zhang, Hang
    Liu, Jian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (08) : 11239 - 11258