Global blow-up in a degenerate and strongly coupled parabolic system with localized sources

被引:2
作者
Zhou, Shuangshuang [1 ]
Zheng, Sining [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Degenerate parabolic system; Strongly coupled; Localized sources; Global blow-up; EQUATION;
D O I
10.1016/j.camwa.2010.08.066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate positive solutions of the strongly coupled degenerate parabolic system with localized sources u(t) = v(p)(Delta u + af(u(x(0), t))), v(t) = u(q) (Delta v + bg(v(x(0), t))), subject to null Dirichlet boundary conditions. The conditions for global and non-global solutions are determined respectively. Furthermore, it is proved for radial blow-up solutions that the blow-up set consists of the whole domain. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2564 / 2571
页数:8
相关论文
共 12 条
[1]  
[Anonymous], 1999, Maximum Principles in Differential Equations
[2]   Boundedness of global solutions of a porous medium equation with a localized source [J].
Chen, YP ;
Liu, QL ;
Gao, HJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (10) :2168-2182
[3]  
Ladyzenskaja O. A., 1967, LINEAR QUASILINEAR E
[4]   Global existence and nonexistence for degenerate parabolic systems [J].
Li, YX ;
Deng, WB ;
Xie, CH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) :3661-3670
[5]   A degenerate and strongly coupled quasilinear parabolic system not in divergence form [J].
Wang, MX ;
Xie, CH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (05) :741-755
[6]   Some degenerate and quasilinear parabolic systems not in divergence form [J].
Wang, MX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 274 (01) :424-436
[7]   A degenerate diffusion equation with a nonlinear source term [J].
Wiegner, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (12) :1977-1995
[8]  
WIEGNER M, 1994, DIFFERENTIAL INTEGRA, V7, P1641
[9]   Blow-up in a degenerate parabolic equation [J].
Winkler, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (05) :1415-1442
[10]   Blow-up of solutions to a degenerate parabolic equation not in divergence form [J].
Winkler, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (02) :445-474