Solid solution formation during spark plasma sintering of ZrB2-TiC-graphite composites

被引:87
作者
Istgaldi, Hamid [1 ]
Asl, Mehdi Shahedi [1 ]
Shahi, Peyman [1 ]
Nayebi, Behzad [2 ]
Ahmadi, Zohre [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Mech Engn, Ardebil, Iran
[2] Amirkabir Univ Technol, Dept Min & Met Engn, POB 15875-4913, Tehran, Iran
关键词
Ultrahigh temperature ceramics; Zirconium diboride; Titanium carbide; Spark plasma sintering; In-situ reinforcement; Nano-graphite; HOT-PRESSING PARAMETERS; ZRB2-BASED COMPOSITES; MECHANICAL-PROPERTIES; FRACTOGRAPHICAL CHARACTERIZATION; DENSIFICATION BEHAVIOR; FRACTURE-TOUGHNESS; ZRO2/SIC RATIO; MICROSTRUCTURE; ZIRCONIUM; CARBON;
D O I
10.1016/j.ceramint.2019.09.287
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Densification and mechanical behavior of graphite-free and graphite-doped ZrB2-TiC composites were investigated. Spark plasma sintering was used to achieve near fully-dense composites. Microstructural and phase analysis were carried out via scanning electron microscopy and X-ray diffraction spectroscopy, to illustrate the sintering and toughening mechanisms in the fabricated samples. Results indicated that 1 wt% graphite nano-flakes can improve the hardness of the composite. However, 3% drop in relative density and similar to 6% decrease in indentation fracture toughness were observed. The formation of TiB2 and ZrC was verified in both TiC-contained composites, although B4C was recognized as the byproduct of reactive sintering in graphite-doped composite. Moreover, the microstructural analysis and the peak shifts in XRD pattern indicated the formation of a solid solution between the ZrB2 and TiB2 phases. Higher hardness of the graphite-doped sample was also attributed to the formation of B4C as a superhard interfacial phase. Toughening mechanisms as well as possible chemical reactions which result in the in-situ formed reinforcement phases were also discussed.
引用
收藏
页码:2923 / 2930
页数:8
相关论文
共 77 条
[1]   Spark plasma sintering of quadruplet ZrB2-SiC-ZrC-Cf composites [J].
Adibpur, Farhad ;
Tayebifard, Seyed Ali ;
Zakeri, Mohammad ;
Asl, Mehdi Shahedi .
CERAMICS INTERNATIONAL, 2020, 46 (01) :156-164
[2]   A novel ZrB2-C3N4 composite with improved mechanical properties [J].
Ahmadi, Zohre ;
Zakeri, Mohammad ;
Habibi-Yangjeh, Aziz ;
Asl, Mehdi Shahedi .
CERAMICS INTERNATIONAL, 2019, 45 (17) :21512-21519
[3]   Densification improvement of spark plasma sintered TiB2-based composites with micron-, submicron- and nano-sized SiC particulates [J].
Ahmadi, Zohre ;
Nayebi, Behzad ;
Asl, Mehdi Shahedi ;
Farahbakhsh, Iman ;
Balak, Zohre .
CERAMICS INTERNATIONAL, 2018, 44 (10) :11431-11437
[4]   Sintering behavior of ZrB2-SiC composites doped with Si3N4: A fractographical approach [J].
Ahmadi, Zohre ;
Nayebi, Behzad ;
Asl, Mehdi Shahedi ;
Kakroudi, Mahdi Ghassemi ;
Farahbakhsh, Iman .
CERAMICS INTERNATIONAL, 2017, 43 (13) :9699-9708
[5]   Fractographical characterization of hot pressed and pressureless sintered AlN-doped ZrB2-SiC composites [J].
Ahmadi, Zohre ;
Nayebi, Behzad ;
Asl, Mehdi Shahedi ;
Kakroudi, Mandi Ghassemi .
MATERIALS CHARACTERIZATION, 2015, 110 :77-85
[6]   Spark plasma sintering of TiAl-Ti3AlC2 composite [J].
Akhlaghi, Maryam ;
Tayebifard, Seyed Ali ;
Salahi, Esmaeil ;
Asl, Mehdi Shahedi .
CERAMICS INTERNATIONAL, 2018, 44 (17) :21759-21764
[7]   Self-propagating high-temperature synthesis of Ti3AlC2 MAX phase from mechanically-activated Ti/Al/graphite powder mixture [J].
Akhlaghi, Maryam ;
Tayebifard, Seyed Ali ;
Salahi, Esmaeil ;
Asl, Mehdi Shahedi ;
Schmidt, Gert .
CERAMICS INTERNATIONAL, 2018, 44 (08) :9671-9678
[8]  
[Anonymous], 2006, ULTRAHIGH TEMPERATUR, DOI DOI 10.2172/887260
[9]   A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .1. DIRECT CRACK MEASUREMENTS [J].
ANSTIS, GR ;
CHANTIKUL, P ;
LAWN, BR ;
MARSHALL, DB .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1981, 64 (09) :533-538
[10]   Nanoindentation and nanostructural characterization of ZrB2-SiC composite doped with graphite nano-flakes [J].
Asl, Mehdi Shahedi ;
Nayebi, Behzad ;
Motallebzadeh, Amir ;
Shokouhimehr, Mohammadreza .
COMPOSITES PART B-ENGINEERING, 2019, 175