Visual Causality: Investigating Graph Layouts for Understanding Causal Processes

被引:1
作者
Vo, Dong-Bach [1 ]
Lazarova, Kristina [1 ]
Purchase, Helen C. [1 ]
McCann, Mark [2 ]
机构
[1] Univ Glasgow, Sch Comp Sci, Glasgow G12 8RZ, Lanark, Scotland
[2] Univ Glasgow, SMRC CSO Social & Publ Hlth Sci Unit, Glasgow G2 3AX, Lanark, Scotland
来源
DIAGRAMMATIC REPRESENTATION AND INFERENCE, DIAGRAMS 2020 | 2020年 / 12169卷
关键词
Causal inference; Causal graph; Graph layout; VISUALIZATION; DIAGRAMS;
D O I
10.1007/978-3-030-54249-8_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Causal diagrams provide a graphical formalism indicating how statistical models can be used to study causal processes. Despite the extensive research on the efficacy of aesthetic graphic layouts, the causal inference domain has not benefited from the results of this research. In this paper, we investigate the performance of graph visualisations for supporting users' understanding of causal graphs. Two studies were conducted to compare graph visualisations for understanding causation and identifying confounding variables in a causal graph. The first study results suggest that while adjacency matrix layouts are better for understanding direct causation, node-link diagrams are better for understanding mediated causation along causal paths. The second study revealed that node-link layouts, and in particular layouts created by a radial algorithm, are more effective for identifying confounder and collider variables.
引用
收藏
页码:332 / 347
页数:16
相关论文
共 35 条
  • [11] Causality visualization using animated growing polygons
    Elmqvist, N
    Tsigas, P
    [J]. INFOVIS 2002: IEEE SYMPOSIUM ON INFORMATION VISUALIZATION 2003, PROCEEDINGS, 2003, : 189 - 196
  • [12] Childhood Depression: Relation to Adaptive, Clinical and Predictor Variables
    Garaigordobil, Maite
    Bernaras, Elena
    Jaureguizar, Joana
    Machimbarrena, Juan M.
    [J]. FRONTIERS IN PSYCHOLOGY, 2017, 8
  • [13] A comparison of the readability of graphs using node-link and matrix-based representations
    Ghoniem, M
    Fekete, JD
    Castagliola, P
    [J]. IEEE SYMPOSIUM ON INFORMATION VISUALIZATION 2004, PROCEEDINGS, 2004, : 17 - 24
  • [14] Government U, 2007, RED OB OB SYST MAP T
  • [15] Animated transitions in statistical data graphics
    Heer, Jeffrey
    Robertson, George G.
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2007, 13 (06) : 1240 - 1247
  • [16] NodeTrix: A hybrid visualization of social networks
    Henry, Nathalie
    Fekete, Jean-Daniel
    McGuffin, Michael J.
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2007, 13 (06) : 1302 - 1309
  • [17] MatrixExplorer: a dual-representation system to explore social networks
    Henry, Nathalie
    Fekete, Jean-Daniel
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2006, 12 (05) : 677 - 684
  • [18] Higgins J. J., 1994, Nonlinear World, V1, P201
  • [19] Lay understanding of the causes of binge drinking in the United Kingdom and Australia: a network diagram approach
    Keatley, David A.
    Ferguson, Eamonn
    Lonsdale, Adam
    Hagger, Martin S.
    [J]. HEALTH EDUCATION RESEARCH, 2017, 32 (01) : 33 - 47
  • [20] Keller R., 2006, Information Visualization, V5, P62, DOI 10.1057/palgrave.ivs.9500116