Laser carved micro-crack channels in paper-based dilution devices

被引:11
作者
Liu, Qian [1 ]
Xu, Chaoping [1 ]
Liang, Heng [1 ]
机构
[1] Xi An Jiao Tong Univ, Separat Sci Inst, Key Lab Biomed Informat Engn, Educ Minist, Xian 710049, Shaanxi, Peoples R China
关键词
Laser carving; Micro-crack; Flow velocity; Fast self-acting transportation; Paper-based dilution devices; Concentration gradients; MICROFLUIDIC DEVICES; DIAGNOSTICS; FLOW; PRECONCENTRATION; FABRICATION; BIOSENSOR; DETECTOR; POINT; CARE;
D O I
10.1016/j.talanta.2017.07.009
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We developed novel laser carved micro-crack (LCC) paper-based channels to significantly accelerate the liquid flow without an external pump. For the aqueous solutions they increased the flow velocity 59 times in 16% laser power-8 micro-cracks-LCC channel compared with it in solely-printed channels. All experimental data from both LCC and solely-printed channels were well-fitted by the time-distance quadratic trinomial that we developed on laser power and micro-crack number. We designed and fabricated T-junction microstructures of LCCs. Further, the microfluidic paper-based analytical device (mu PAD) of LCC on dye mixing gradient and pH gradient were developed with the characteristics, fast self-acting transportation and high-performance mixing of liquid flows. In the dye mixing gradient the time cost was reduced from 2355 s in the solely-printed one to only 123 s in the five-stage of this LCC-mu PAD. It was useful for quick and long-distance transferences through the multiple units of mu PADs. Certainly, this LCC-mu PAD was inexpensive, disposable, portable and applicable to resource-limited environments.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 29 条
[1]  
Bishop E., 1972, INDICATORS
[2]   Two-ply channels for faster wicking in paper-based microfluidic devices [J].
Camplisson, Conor K. ;
Schilling, Kevin M. ;
Pedrotti, William L. ;
Stone, Howard A. ;
Martinez, Andres W. .
LAB ON A CHIP, 2015, 15 (23) :4461-4466
[3]   Recent Developments in Paper-Based Microfluidic Devices [J].
Cate, David M. ;
Adkins, Jaclyn A. ;
Mettakoonpitak, Jaruwan ;
Henry, Charles S. .
ANALYTICAL CHEMISTRY, 2015, 87 (01) :19-41
[4]   An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care [J].
Choi, Jane Ru ;
Hu, Jie ;
Tang, Ruihua ;
Gong, Yan ;
Feng, Shangsheng ;
Ren, Hui ;
Wen, Ting ;
Li, XiuJun ;
Abas, Wan Abu Bakar Wan ;
Pingguan-Murphy, Belinda ;
Xu, Feng .
LAB ON A CHIP, 2016, 16 (03) :611-621
[5]   "Paper Machine" for Molecular Diagnostics [J].
Connelly, John T. ;
Rolland, Jason P. ;
Whitesides, George M. .
ANALYTICAL CHEMISTRY, 2015, 87 (15) :7595-7601
[6]   Paper-based α-amylase detector for point-of-care diagnostics [J].
Dutta, Satarupa ;
Mandal, Nilanjan ;
Bandyopadhyay, Dipankar .
BIOSENSORS & BIOELECTRONICS, 2016, 78 :447-453
[7]   Controlled reagent transport in disposable 2D paper networks [J].
Fu, Elain ;
Lutz, Barry ;
Kauffman, Peter ;
Yager, Paul .
LAB ON A CHIP, 2010, 10 (07) :918-920
[8]   Programming Fluid Transport in Paper-Based Microfluidic Devices Using Razor-Crafted Open Channels [J].
Giokas, Dimosthenis L. ;
Tsogas, George Z. ;
Vlessidis, Athanasios G. .
ANALYTICAL CHEMISTRY, 2014, 86 (13) :6202-6207
[9]   Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper [J].
Glavan, Ana C. ;
Martinez, Ramses V. ;
Maxwell, E. Jane ;
Subramaniam, Anand Bala ;
Nunes, Rui M. D. ;
Soh, Siowling ;
Whitesides, George M. .
LAB ON A CHIP, 2013, 13 (15) :2922-2930
[10]   Rapid Discrimination of Bacteria by Paper Spray Mass Spectrometry [J].
Hamid, Ahmed M. ;
Jarmusch, Alan K. ;
Pirro, Valentina ;
Pincus, David H. ;
Clay, Bradford G. ;
Gervasi, Gaspard ;
Cooks, R. Graham .
ANALYTICAL CHEMISTRY, 2014, 86 (15) :7500-7507