FROM BOLTZMANN EQUATION TO SPHERICAL HARMONICS EXPANSION MODEL: DIFFUSION LIMIT AND POISSON COUPLING

被引:0
|
作者
Tayeb, Mohamed Lazhar [1 ]
机构
[1] Univ Tunis ElManar, Dept Math, Fac Sci Tunis, Tunis, Tunisia
关键词
Kinetic transport equations; Boltzmann-Poisson system; Spherical Harmonics Expansion (SHE) model; relative entropy; electron-impurity collision; Diffusion limit; Macroscopic limit; Hilbert expansion; BOUNDARY-VALUE-PROBLEM; HIGH-FIELD LIMIT; FOKKER-PLANCK SYSTEM; KINETIC-EQUATIONS; WEAK SOLUTIONS; GLOBAL EXISTENCE; MACROSCOPIC MODELS; APPROXIMATION; REGULARITY; TRANSPORT;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The diffusion approximation of an initial-boundary value problem for a Boltzmann Poisson system is studied. An elastic operator modeling electron-impurity collision is considered. A relative entropy is used to control the terms coming from the boundary and to prove useful L-2-estimates for the renormalized solutions of the scaled Boltzmann equation (coupled to Poisson). A careful analysis of a relative entropy for high velocity allows us to show uniform bounds for the total mass and the kinetic energy which gives the compactness of the self-consistent electrostatic potential. Then, the moment method is used to prove the convergence of the renormalized solutions to a weak solution of a Spherical Harmonics Expansion (or SHE-) model coupled to the Poisson equation.
引用
收藏
页码:255 / 275
页数:21
相关论文
共 40 条
  • [21] DIFFUSION MODELS FOR SPIN TRANSPORT DERIVED FROM THE SPINOR BOLTZMANN EQUATION
    El Hajj, Raymond
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (03) : 565 - 592
  • [22] On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Asymptotic Expansion
    He, Ling-Bing
    Lu, Xuguang
    Pulvirenti, Mario
    Zhou, Yu-Long
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (12)
  • [23] Incompressible Navier-Stokes-Fourier Limit from The Boltzmann Equation: Classical Solutions
    Jiang, Ning
    Xu, Chao-Jiang
    Zhao, Huijiang
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (05) : 1817 - 1855
  • [24] Hybrid Simplified Spherical Harmonics with Diffusion Equation for X-Ray Luminescence Computed Tomography
    Zhao, Hengna
    Fan, Jingxiao
    Guo, Hongbo
    Hou, Yuqing
    He, Xiaowei
    IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 568 - 580
  • [25] The incompressible Navier-Stokes-Fourier limit from Boltzmann-Fermi-Dirac equation
    Jiang, Ning
    Xiong, Linjie
    Zhou, Kai
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 308 : 77 - 129
  • [26] DYNAMICAL LOW-RANK INTEGRATOR FOR THE LINEAR BOLTZMANN EQUATION: ERROR ANALYSIS IN THE DIFFUSION LIMIT
    Ding, Zhiyan
    Einkemmer, Lukas
    Li, Qin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (04) : 2254 - 2285
  • [27] An energy-transport model for semiconductors derived from the Boltzmann equation
    BenAbdallah, N
    Degond, P
    Genieys, S
    JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (1-2) : 205 - 231
  • [28] COMPRESSIBLE EULER LIMIT FROM BOLTZMANN EQUATION WITH COMPLETE DIFFUSIVE BOUNDARY CONDITION IN HALF-SPACE
    Jiang, Ning
    Luo, Yi-long
    Tang, Shaojun
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (08) : 5323 - 5359
  • [29] FRACTIONAL DIFFUSION LIMIT OF A LINEAR BOLTZMANN MODEL WITH REFLECTIVE BOUNDARIES IN A HALF-SPACE
    Cesbron, Ludovic
    KINETIC AND RELATED MODELS, 2024, 17 (04) : 577 - 605
  • [30] Optimizing electroosmotic flow in an annulus from Debye Huckel approximation to Poisson-Boltzmann equation
    Cen, Gan-Jun
    Chang, Chien-Cheng
    Wang, Chang-Yi
    RSC ADVANCES, 2017, 7 (12) : 7274 - 7286