FROM BOLTZMANN EQUATION TO SPHERICAL HARMONICS EXPANSION MODEL: DIFFUSION LIMIT AND POISSON COUPLING

被引:0
|
作者
Tayeb, Mohamed Lazhar [1 ]
机构
[1] Univ Tunis ElManar, Dept Math, Fac Sci Tunis, Tunis, Tunisia
关键词
Kinetic transport equations; Boltzmann-Poisson system; Spherical Harmonics Expansion (SHE) model; relative entropy; electron-impurity collision; Diffusion limit; Macroscopic limit; Hilbert expansion; BOUNDARY-VALUE-PROBLEM; HIGH-FIELD LIMIT; FOKKER-PLANCK SYSTEM; KINETIC-EQUATIONS; WEAK SOLUTIONS; GLOBAL EXISTENCE; MACROSCOPIC MODELS; APPROXIMATION; REGULARITY; TRANSPORT;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The diffusion approximation of an initial-boundary value problem for a Boltzmann Poisson system is studied. An elastic operator modeling electron-impurity collision is considered. A relative entropy is used to control the terms coming from the boundary and to prove useful L-2-estimates for the renormalized solutions of the scaled Boltzmann equation (coupled to Poisson). A careful analysis of a relative entropy for high velocity allows us to show uniform bounds for the total mass and the kinetic energy which gives the compactness of the self-consistent electrostatic potential. Then, the moment method is used to prove the convergence of the renormalized solutions to a weak solution of a Spherical Harmonics Expansion (or SHE-) model coupled to the Poisson equation.
引用
收藏
页码:255 / 275
页数:21
相关论文
共 40 条
  • [1] THE SPHERICAL HARMONICS EXPANSION MODEL COUPLED TO THE POISSON EQUATION
    Haskovec, Jan
    Masmoudi, Nader
    Schmeiser, Christian
    Tayeb, Mohamed Lazhar
    KINETIC AND RELATED MODELS, 2011, 4 (04) : 1063 - 1079
  • [2] Diffusion limit of a Boltzmann-Poisson system with nonlinear equilibrium state
    Addala, Lanoir
    Tayeb, Mohamed Lazhar
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2019, 16 (01) : 131 - 156
  • [3] Diffusion limit of a semiconductor Boltzmann-Poisson system
    Masmoudi, Nader
    Tayeb, Mohamed Lazhar
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) : 1788 - 1807
  • [4] Homogenization of a spherical harmonics expansion model
    Masmoudi, Nader
    Tayeb, Mohamed Lazhar
    Tlili, Abderraouf
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (03) : 453 - 485
  • [5] An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit
    Bennoune, Mounir
    Lemou, Mohammed
    Mieussens, Luc
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2009, 21 (05) : 401 - 421
  • [6] DIFFUSION LIMIT OF THE VLASOV-POISSON-BOLTZMANN SYSTEM
    Li, Hai-Liang
    Yang, Tong
    Zhong, Mingying
    KINETIC AND RELATED MODELS, 2021, 14 (02) : 211 - 255
  • [7] An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit
    Mounir Bennoune
    Mohammed Lemou
    Luc Mieussens
    Continuum Mechanics and Thermodynamics, 2009, 21 : 401 - 421
  • [8] Diffusion limit of a Boltzmann-Poisson system: case of general inflow boundary data profile
    Ben Ali, Samia
    Tayeb, Mohamed Lazhar
    TUNISIAN JOURNAL OF MATHEMATICS, 2024, 6 (03) : 455 - 479
  • [9] Accurate reaction-diffusion limit to the spherical-symmetric Boltzmann equation
    Heizler, Shay I.
    Krief, Menahem
    Racah, Michael Assaf
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [10] Hybrid simplified spherical harmonics with diffusion equation for light propagation in tissues
    Chen, Xueli
    Sun, Fangfang
    Yang, Defu
    Ren, Shenghan
    Zhang, Qian
    Liang, Jimin
    PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (16) : 6305 - 6322