The existence of a global attractor for the (2+1)-dimensional long wave-short wave resonance interaction equation

被引:6
|
作者
Lu, Hong [1 ]
Xin, Jie [1 ]
机构
[1] Ludong Univ, Sch Math & Informat, Yantai 264025, Shandong Prov, Peoples R China
基金
中国博士后科学基金;
关键词
Long wave-short wave resonance interaction equation; Global attractor; Decomposition of the solution semigroup;
D O I
10.1016/j.na.2010.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence of a global attractor and an asymptotic smoothing effect of the solution for the (2 + 1)-dimensional long wave-short wave resonance interaction equation. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3767 / 3778
页数:12
相关论文
共 5 条
  • [1] Existence of multiple equilibrium points in global attractor for damped wave equation
    Fengjuan Meng
    Cuncai Liu
    Chang Zhang
    Boundary Value Problems, 2019
  • [2] Existence of multiple equilibrium points in global attractor for damped wave equation
    Meng, Fengjuan
    Liu, Cuncai
    Zhang, Chang
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [3] GLOBAL ATTRACTOR FOR A ONE DIMENSIONAL WEAKLY DAMPED HALF-WAVE EQUATION
    Alouini, Brahim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (08): : 2655 - 2670
  • [4] Existence of global attractor for one-dimensional weakly damped nonlinear Schrodinger equation with Dirac interaction and artificial boundary condition in half-line
    Abounouh, Mostafa
    Al Moatassime, Hassan
    Chrifi, Abderrazak
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [5] Existence of global attractor for one-dimensional weakly damped nonlinear Schrödinger equation with Dirac interaction and artificial boundary condition in half-line
    Mostafa Abounouh
    Hassan Al Moatassime
    Abderrazak Chrifi
    Advances in Difference Equations, 2017