A Novel EM Identification Method for Hammerstein Systems With Missing Output Data

被引:131
作者
Wang, Dongqing [1 ]
Zhang, Shuo [1 ]
Gan, Min [1 ]
Qiu, Jianlong [2 ]
机构
[1] Qingdao Univ, Coll Elect Engn, Qingdao 266071, Peoples R China
[2] Linyi Univ, Sch Automat & Elect Engn, Linyi 276000, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Data models; Informatics; Estimation; Computational modeling; Data systems; Gallium nitride; Nonlinear systems; Data loss; expectation maximization (EM) algorithm; Hammerstein systems; parameter identification; MULTIVARIABLE NONLINEAR-SYSTEMS; PARAMETER-ESTIMATION ALGORITHM; RECURSIVE-IDENTIFICATION; ITERATIVE ALGORITHM; DYNAMIC-SYSTEMS; MODEL RECOVERY; ERROR SYSTEMS; DEAD-ZONE; CONVERGENCE; DIAGNOSIS;
D O I
10.1109/TII.2019.2931792
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article concerns a novel auxiliary-model-based expectation maximization (EM) estimation method for Hammerstein systems with data loss by extending the EM method to estimate models with multiple parameter vectors. The novel EM method relaxes the requirements on an autoregression model with one parameter vector, interactively maximizes the expectation over multiple parameter vectors in a more general model, and uses the output of an auxiliary model to substitute the missing outputs in the information vector in iteration processes. A numerical simulation is employed to demonstrate the effectiveness of the proposed novel EM method.
引用
收藏
页码:2500 / 2508
页数:9
相关论文
共 47 条
[1]   Convergence of the iterative algorithm for a general Hammerstein system identification [J].
Bai, Er-Wei ;
Li, Kang .
AUTOMATICA, 2010, 46 (11) :1891-1896
[2]  
Bashir F., 2017, NEUROCOMPUTING, V53, P1243
[3]   Asymptotic properties of least-squares estimates of Hammerstein-Wiener models [J].
Bauer, D ;
Ninness, B .
INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (01) :34-51
[4]   A Regularized Variable Projection Algorithm for Separable Nonlinear Least-Squares Problems [J].
Chen, Guang-Yong ;
Gan, Min ;
Chen, C. L. Philip ;
Li, Han-Xiong .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (02) :526-537
[5]  
Chen J., 2017, AUTOMATICA, V53, P1243
[6]   Multi-step-length gradient iterative algorithm for equation-error type models [J].
Chen, Jing ;
Ding, Feng ;
Liu, Yanjun ;
Zhu, Quanmin .
SYSTEMS & CONTROL LETTERS, 2018, 115 :15-21
[7]   Recursive Least Squares Algorithm for Nonlinear Dual-rate Systems Using Missing-Output Estimation Model [J].
Chen, Jing ;
Liu, Yanjun ;
Wang, Xuehai .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (04) :1406-1425
[8]   Several gradient parameter estimation algorithms for dual-rate sampled systems [J].
Chen, Jing .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (01) :543-554
[9]   Parameter estimation for a dual-rate system with time delay [J].
Chen, Lei ;
Han, Lili ;
Huang, Biao ;
Liu, Fei .
ISA TRANSACTIONS, 2014, 53 (05) :1368-1376
[10]   Identification for Hammerstein nonlinear ARMAX systems based on multi-innovation fractional order stochastic gradient [J].
Cheng, Songsong ;
Wei, Yiheng ;
Sheng, Dian ;
Chen, Yuquan ;
Wang, Yong .
SIGNAL PROCESSING, 2018, 142 :1-10