An immersed interface method for anisotropic elliptic problems on irregular domains in 2D

被引:12
作者
Dumett, MA [1 ]
Keener, JP [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
immersed interface method; anisotropic Laplacian; Gerschgorin criterion; linear programming;
D O I
10.1002/num.20051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is a generalization of the immersed interface method for discretization of a nondiagonal anisotropic Laplacian in 2D. This first-order discretization scheme enforces weakly diagonal dominance of the numerical scheme whenever possible. A necessary and sufficient condition depending on the mesh size h for the existence of this scheme at an interior grid point is found in terms of the anisotropy matrix. A linear programming approach is introduced for finding the weights of the schemes. The method is tested with a parametrized family of anisotropic Poisson equations. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:397 / 420
页数:24
相关论文
共 15 条