Theoretical investigation on the hydrogen evolution reaction mechanism at MoS2 heterostructures: the essential role of the 1T/2H phase interface

被引:23
|
作者
Zhang, Tian [1 ]
Zhu, Houyu [1 ]
Guo, Chen [2 ]
Cao, Shoufu [1 ]
Wu, Chi-Man Lawrence [2 ]
Wang, Zhaojie [1 ]
Lu, Xiaoqing [1 ]
机构
[1] China Univ Petr, Sch Mat Sci & Engn, Qingdao 266580, Shandong, Peoples R China
[2] City Univ Hong Kong, Dept Mat Sci & Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
ACTIVE EDGE SITES; CATALYTIC-ACTIVITY; VOLMER-HEYROVSKY; NANOSHEETS; ELECTROCATALYSTS; ADSORPTION; GRAPHENE; ENHANCEMENT; KINETICS; 1T-MOS2;
D O I
10.1039/c9cy01901d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MoS2 with mixed 1T and 2H phases has exhibited excellent catalytic activity for the hydrogen evolution reaction (HER) in recent experiments. However the essential role played by the 1T/2H phase interface is still obscure. Herein, periodic density functional theory (DFT) calculations have been performed to study the HER mechanism at two types of 1T/2H phase interfaces of MoS2 ("zigzag" and "armchair"). By analyzing the free energy of atomic hydrogen adsorption (Delta G(H)) as the descriptor, we suggest that the optimum evolution of H-2 proceeds at similar to 10% H coverage for the "zigzag" and "armchair" interfaces. Under this H coverage, the Volmer-Tafel mechanism is the dominant reaction pathway for both interfaces, in which the Volmer reaction is the rate determining step, and the HER would proceed more easily at the "zigzag" interface with lower energy barriers. The results show that the HER activity along the 1T/2H phase interface is comparable with those at the Mo-edge of 2H MoS2 and the basal plane of 1T MoS2. In addition, we investigate the effect of metal (Fe, Co, Ni, and Zn) and non-metal (N, P, and O) dopants for the "zigzag" type interface, and propose that the HER activity could be improved by doping with Ni for the interfacial Mo atom or with N for the interfacial S atom.
引用
收藏
页码:458 / 465
页数:8
相关论文
共 50 条
  • [21] Superior Hydrogen Evolution Reaction Performance in 2H-MoS2 to that of 1T Phase
    Zhang, Wencui
    Liao, Xiaobin
    Pan, Xuelei
    Yan, Mengyu
    Li, Yanxi
    Tian, Xiaocong
    Zhao, Yan
    Xu, Lin
    Mai, Liqiang
    SMALL, 2019, 15 (31)
  • [22] 2H/1T Phase Transition of Multilayer MoS2 by Electrochemical Incorporation of S Vacancies
    Gan, Xiaorong
    Lee, Lawrence Yoon Suk
    Wong, Kwok-yin
    Lo, Tsz Wing
    Ho, Kwun Hei
    Lei, Dang Yuan
    Zhao, Huimin
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (09): : 4754 - 4765
  • [23] Scaling up Simultaneous Exfoliation and 2H to 1T Phase Transformation of MoS2
    Kiran, Patlolla Sai
    Kumar, Krishnappagari Vijay
    Pandit, Niranjan
    Indupuri, Satish
    Kumar, Rahul
    Wagh, Vedant Vinod
    Islam, Aminul
    Keshri, Anup Kumar
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (29)
  • [24] Vertical nanosheet array of 1T phase MoS2 for efficient and stable hydrogen evolution
    Liu, Zhipeng
    Zhao, Lei
    Liu, Yuhua
    Gao, Zhichao
    Yuan, Shisheng
    Li, Xiaotian
    Li, Nan
    Miao, Shiding
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 246 : 296 - 302
  • [25] Direct growth of high-content 1T phase MoS2 film by pulsed laser deposition for hydrogen evolution reaction
    Wang, Ruijing
    Shao, Qiang
    Yuan, Qin
    Sun, Peng
    Nie, Rongrong
    Wang, Xuefeng
    APPLIED SURFACE SCIENCE, 2020, 504
  • [26] A comparative study on the electrochemical capacitor performance of 1T/2H hybridized phase and 2H pure phase of MoS2 nanoflowers
    Murugesan, Ramesh Aravind
    Raja, Krishna Chandar Nagamuthu
    NANOTECHNOLOGY, 2022, 33 (03)
  • [27] 1T/2H mixed phase MoS2 in-situ grown on the surface of montmorillonite for selectively removing Pb2+
    Cheng, Y.
    Yang, S.
    Tao, E.
    Liu, L.
    Wang, D.
    Qian, J.
    MATERIALS TODAY CHEMISTRY, 2022, 24
  • [28] Mechanisms of Semiconducting 2H to Metallic 1T Phase Transition in Two-dimensional MoS2 Nanosheets
    Jin, Qiu
    Liu, Ning
    Chen, Biaohua
    Mei, Donghai
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (49) : 28215 - 28224
  • [29] Fe/Ni bi-metallic organic framework supported 1T/2H MoS2 heterostructures as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution
    Lin, Zhiying
    Feng, Tao
    Ma, Xin
    Liu, Gang
    FUEL, 2023, 339
  • [30] Hybridized 1T/2H MoS2 Having Controlled 1T Concentrations and its use in Supercapacitors
    Nguyen Thi Xuyen
    Ting, Jyh-Ming
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (68) : 17348 - 17355