Mixed-dimensional, symmetric coupling of FEM and BEM

被引:18
|
作者
Haas, M [1 ]
Kuhn, G [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Appl Mech, D-91058 Erlangen, Germany
关键词
boundary element method; finite element method; symmetric-Galerkin approximation; coupling; mixed-dimensional coupling; symmetric coupling; shell elements;
D O I
10.1016/S0955-7997(03)00012-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the Symmetric Galerkin Boundary Element Method (SGBEM), FEM-like stiffness matrices can be produced which are suitable for coupling the Boundary Element Method (BEM) and the Finite Element Method (FEM). Here, we focus on the mixed-dimensional coupling in linear elasticity. i.e. three-dimensional BEM-domains will be coupled with two-dimensional finite shell elements. After briefly recalling the basics of the SGBEM. a direct kinematic coupling scheme will be presented, where the BE-domain is treated as a finite macro element. When assembling the stiffness matrix, the different kinematic degrees of freedom at the interface of both formulations require special attention. The accuracy of the method used is demonstrated by a numerical example. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:575 / 582
页数:8
相关论文
共 50 条
  • [21] A symmetric domain decomposition formulation of hybrid FEM-BEM coupling for electromagnetic analysis
    Zhao, Kezhong
    Vouvakis, Marinos N.
    Seo, Seung Mo
    Lee, Seung-Choel
    Lee, Jin-Fa
    2006 17TH INTERNATIONAL ZURICH SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, VOLS 1 AND 2, 2006, : 45 - +
  • [22] Coupling of FEM and BEM in shape optimization
    Eppler, Karsten
    Harbrecht, Helmut
    NUMERISCHE MATHEMATIK, 2006, 104 (01) : 47 - 68
  • [23] MIXED-DIMENSIONAL COUPLING VIA AN EXTENDED DIRICHLET-TO-NEUMANNMETHOD
    Ofir, Yoav
    Rabinovich, Daniel
    Givoli, Dan
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2016, 14 (05) : 489 - 513
  • [24] The Nitsche method applied to a class of mixed-dimensional coupling problems
    Rabinovich, Daniel
    Ofir, Yoav
    Givoli, Dan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 274 : 125 - 147
  • [25] Coupling of BEM and FEM for elastic structures
    Schnack, E
    Türke, K
    BOUNDARY ELEMENT TOPICS, 1997, : 265 - 289
  • [26] Mixed-dimensional geometric coupling of port-Hamiltonian systems
    Jaesehke, Jens
    Skrepek, Nathanael
    Ehrhardt, Matthias
    APPLIED MATHEMATICS LETTERS, 2023, 137
  • [27] A dual-dual formulation for the coupling of mixed-FEM and BEM in hyperelasticity
    Gatica, GN
    Heuer, N
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (02) : 380 - 400
  • [28] Convergence of the iterative coupling of BEM and FEM
    Elleithy, WM
    Al-Gahtani, HJ
    El-Gebeily, M
    BOUNDARY ELEMENTS XXI, 1999, 6 : 281 - 290
  • [29] Coupling of FEM and BEM in Shape Optimization
    Karsten Eppler
    Helmut Harbrecht
    Numerische Mathematik, 2006, 104 : 47 - 68
  • [30] EXPERIMENTAL RESULTS OF CONVERGENCE ORDER FOR 2-DIMENSIONAL COUPLING OF FEM AND BEM
    CARMINE, R
    SCHRECK, E
    SCHNACK, E
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (06): : T699 - T701