Toward Using Reinforcement Learning for Trigger Selection in Network Slice Mobility

被引:23
|
作者
Addad, Rami Akrem [1 ]
Cadette Dutra, Diego Leonel [2 ]
Taleb, Tarik [1 ,3 ,4 ]
Flinck, Hannu [5 ]
机构
[1] Aalto Univ, Elect Engn Sch, Commun & Networking Dept, Espoo 02150, Finland
[2] Univ Fed Rio de Janeiro, UFRJ, Syst Engn & Comp Sci Program PESC, BR-21945970 Rio De Janeiro, Brazil
[3] Univ Oulu, Ctr Wireless Commun CWC, Oulu 90570, Finland
[4] Sejong Univ, Comp & Informat Secur Dept, Seoul 05006, South Korea
[5] Nokia Bell Labs, Espoo 02610, Finland
基金
芬兰科学院;
关键词
5G mobile communication; Heuristic algorithms; Cloud computing; Reinforcement learning; Network function virtualization; Computer architecture; Service level agreements; 5G; network slicing; multi-access edge computing; network softwarisation; deep reinforcement learning; agent-based resource orchestration; 5G; CLOUD;
D O I
10.1109/JSAC.2021.3078501
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent 5G trials have demonstrated the usefulness of the Network Slicing concept that delivers customizable services to new and under-serviced industry sectors. However, user mobility's impact on the optimal resource allocation within and between slices deserves more attention. Slices and their dedicated resources should be offered where the services are to be consumed to minimize network latency and associated overheads and costs. Different mobility patterns lead to different resource re-allocation triggers, leading eventually to slice mobility when enough resources are to be migrated. The selection of the proper triggers for resource re-allocation and related slice mobility patterns is challenging due to triggers' multiplicity and overlapping nature. In this paper, we investigate the applicability of two Deep Reinforcement Learning based algorithms for allowing a fine-grained selection of mobility triggers that may instantiate slice and resource mobility actions. While the first proposed algorithm relies on a value-based learning method, the second one exploits a hybrid approach to optimize the action selection process. We present an enhanced ETSI Network Function Virtualization edge computing architecture that incorporates the studied mechanisms to implement service and slice migration. We evaluate the proposed methods' efficiency in a simulated environment and compare their performance in terms of training stability, learning time, and scalability. Finally, we identify and quantify the applicability aspects of the respective approaches.
引用
收藏
页码:2241 / 2253
页数:13
相关论文
共 50 条
  • [21] On the Robustness of Controlled Deep Reinforcement Learning for Slice Placement
    Esteves, Jose Jurandir Alves
    Boubendir, Amina
    Guillemin, Fabrice
    Sens, Pierre
    JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2022, 30 (03)
  • [22] Controlled Deep Reinforcement Learning for Optimized Slice Placement
    Esteves, Jose Jurandir Alves
    Boubendir, Amina
    Guillemin, Fabrice
    Sens, Pierre
    2021 IEEE INTERNATIONAL MEDITERRANEAN CONFERENCE ON COMMUNICATIONS AND NETWORKING (IEEE MEDITCOM 2021), 2021, : 20 - 22
  • [23] Dependency-Aware Microservice Deployment for Edge Computing: A Deep Reinforcement Learning Approach With Network Representation
    Wang, Chenyang
    Yu, Hao
    Li, Xiuhua
    Ma, Fei
    Wang, Xiaofei
    Taleb, Tarik
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 14737 - 14753
  • [24] On the Robustness of Controlled Deep Reinforcement Learning for Slice Placement
    Jose Jurandir Alves Esteves
    Amina Boubendir
    Fabrice Guillemin
    Pierre Sens
    Journal of Network and Systems Management, 2022, 30
  • [25] RL-NSB: Reinforcement Learning-Based 5G Network Slice Broker
    Sciancalepore, Vincenzo
    Costa-Perez, Xavier
    Banchs, Albert
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2019, 27 (04) : 1543 - 1557
  • [26] Reinforcement Learning-based Multi-domain Network Slice Provisioning
    Wu, Zhouxiang
    Ishigaki, Genya
    Gour, Riti
    Li, Congzhou
    Mi, Feng
    Talluri, Subhash
    Jue, Jason P.
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 1899 - 1904
  • [27] Deep Reinforcement Learning for Backhaul Link Selection for Network Slices in IAB Networks
    Morgado, Antonio J.
    Saghezchi, Firooz B.
    Fondo-Ferreiro, Pablo
    Gil-Castineira, Felipe
    Papaioannou, Maria
    Ramantas, Kostas
    Rodriguez, Jonathan
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 6267 - 6272
  • [28] Relay Nodes Selection Using Reinforcement Learning
    Kim, Haesik
    Fujii, Takeo
    Umebayashi, Kenta
    3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 329 - 334
  • [29] Automated Deployment of Virtual Network Function in 5G Network Slicing Using Deep Reinforcement Learning
    Othman, Anuar
    Nayan, Nazrul A.
    Abdullah, Siti N. H. S.
    IEEE ACCESS, 2022, 10 : 61065 - 61079
  • [30] 5G/B5G Network Slice Management via Staged Reinforcement Learning
    Liu, Chien-Chang
    Chou, Li-Der
    IEEE ACCESS, 2023, 11 : 72272 - 72280