Nonlinear reconfigurable control based on RBF neural networks

被引:0
|
作者
Zhou, C [1 ]
Hu, WL [1 ]
Chen, QW [1 ]
Wang, Y [1 ]
Hu, SS [1 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Automat, Nanjing 210094, Peoples R China
来源
PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5 | 2000年
关键词
reconfigurable control; neural networks; model-following;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new type of non-linear reconfigurable control strategy based on model-following method using Radial basis function (RBF) neural networks is presented in this paper. This method can make the outputs of impaired system tracking those of reference model accurately without knowing the location and damage degree of failure, and a RBF neural network controller is used to compensate non-linear dynamics caused by failure. Simulation results reveal that this method has good reconfigurable performance and robustness.
引用
收藏
页码:1002 / 1005
页数:4
相关论文
共 50 条
  • [41] Reconfigurable FPGA implementation of neural networks
    Hajduk, Zbigniew
    NEUROCOMPUTING, 2018, 308 : 227 - 234
  • [42] Adaptive RBF neural network-based control of an underactuated control moment gyroscope
    Montoya-Chairez, Jorge
    Rossomando, Fracisco G.
    Carelli, Ricardo
    Santibanez, Victor
    Moreno-Valenzuela, Javier
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (12): : 6805 - 6818
  • [43] Cognitive radio signal classification based on subspace decomposition and RBF neural networks
    Ludimila La Rosa Centeno
    Fernando César Comparsi De Castro
    Maria Cristina Felippetto De Castro
    Candice Müller
    Sandro Machado Ribeiro
    Wireless Networks, 2018, 24 : 821 - 831
  • [44] Modeling a SOFC stack based on GA-RBF neural networks identification
    Wu, Xiao-Juan
    Zhu, Xin-Jian
    Cao, Guang-Yi
    Tu, Heng-Yong
    JOURNAL OF POWER SOURCES, 2007, 167 (01) : 145 - 150
  • [45] Adaptive RBF neural network-based control of an underactuated control moment gyroscope
    Jorge Montoya-Cháirez
    Fracisco G. Rossomando
    Ricardo Carelli
    Víctor Santibáñez
    Javier Moreno-Valenzuela
    Neural Computing and Applications, 2021, 33 : 6805 - 6818
  • [46] Cascaded hybrid intrusion detection model based on SOM and RBF neural networks
    Almiani, Muder
    AbuGhazleh, Alia
    Al-Rahayfeh, Amer
    Razaque, Abdul
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (21):
  • [47] Intrusion detection system based on radial basis function (RBF) neural networks
    Qin Cuimang
    Yang Qiuxiang
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 2639 - 2642
  • [48] Cognitive radio signal classification based on subspace decomposition and RBF neural networks
    Centeno, Ludimila La Rosa
    Comparsi De Castro, Fernando Cesar
    Felippetto De Castro, Maria Cristina
    Muller, Candice
    Ribeiro, Sandro Machado
    WIRELESS NETWORKS, 2018, 24 (03) : 821 - 831
  • [49] Identification and control of nonlinear systems using neural networks with variable structure control-based learning algorithms
    Rivas-Echeverría, F
    Colina-Morles, E
    Mazzei-Rivas, I
    APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE IV, 2001, 4390 : 252 - 262
  • [50] Neural networks in design of iterative learning control for nonlinear systems
    Patan, Krzysztof
    Patan, Maciej
    Kowalow, Damian
    IFAC PAPERSONLINE, 2017, 50 (01): : 13402 - 13407