Binding site of activators of the cystic fibrosis transmembrane conductance regulator in the nucleotide binding domains

被引:103
作者
Moran, O
Galietta, LJV
Zegarra-Moran, O
机构
[1] CNR, Ist Biofis, I-16149 Genoa, Italy
[2] Ist Giannina Gaslini, Genet Mol Lab, I-16148 Genoa, Italy
关键词
ABC transporters; cystic fibrosis; molecular docking; molecular modeling; chloride channel;
D O I
10.1007/s00018-004-4422-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The use of substances that could activate the defective chloride channels of the mutant cystic fibrosis transmembrane conductance regulator ( CFTR) has been suggested as possible therapy for cystic fibrosis. Using epithelia formed by cells stably transfected with wildtype or mutant ( G551D, G1349D) CFTR, we estimated the apparent dissociation constant, K D, of a series of CFTR activators by measuring the increase in the apical membrane current. Modification of apparent K D of CFTR activators by mutations of the nucleotide-binding domains ( NBDs) suggests that the binding site might be in these regions. The human NBD structure was predicted by homology with murine NBD1. An NBD1-NBD2 complex was constructed by overlying monomers to a bacterial ABC transporter NBD dimer in the 'headtotail' conformation. Binding sites for CFTR activators were predicted by molecular docking. Comparison of theoretical binding free energy estimated in the model to free energy estimated from the apparent dissociation constants, K D, resulted in a remarkably good correlation coefficient for one of the putative binding sites, located in the interface between NBD1 and NBD2.
引用
收藏
页码:446 / 460
页数:15
相关论文
共 83 条
[1]   Capsaicin potentiates wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride-channel currents [J].
Ai, T ;
Bompadre, SG ;
Wang, XH ;
Hu, SH ;
Li, M ;
Hwang, TC .
MOLECULAR PHARMACOLOGY, 2004, 65 (06) :1415-1426
[2]  
Al-Nakkash L, 2001, J PHARMACOL EXP THER, V296, P464
[3]   The first nucleotide binding domain of cystic fibrosis transmembrane conductance regulator is a site of stable nucleotide interaction, whereas the second is a site of rapid turnover [J].
Aleksandrov, L ;
Aleksandrov, AA ;
Chang, XB ;
Riordan, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (18) :15419-15425
[4]   Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator [J].
Aleksandrov, L ;
Mengos, A ;
Chang, XB ;
Aleksandrov, A ;
Riordan, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (16) :12918-12923
[5]  
Baxter CA, 1998, PROTEINS, V33, P367, DOI 10.1002/(SICI)1097-0134(19981115)33:3<367::AID-PROT6>3.0.CO
[6]  
2-W
[7]   Development of substituted benzo[c]quinolizinium compounds as novel activators of the cystic fibrosis chloride channel [J].
Becq, F ;
Mettey, Y ;
Gray, MA ;
Galietta, LJV ;
Dormer, RL ;
Merten, M ;
Métayé, T ;
Chappe, V ;
Marvingt-Mounir, C ;
Zegarra-Moran, O ;
Tarran, R ;
Bulteau, L ;
Dérand, R ;
Pereira, MMC ;
McPherson, MK ;
Rogier, C ;
Joffre, M ;
Argent, BE ;
Sarrouilhe, D ;
Kammouni, W ;
Figarella, C ;
Verrier, B ;
Gola, M ;
Vierfond, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (39) :27415-27425
[8]   Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology:: Structural model of the nucleotide binding domains of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) [J].
Bianchet, MA ;
Ko, YH ;
Amzel, LM ;
Pedersen, PL .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1997, 29 (05) :503-524
[9]   CFTR activation in human bronchial epithelial cells by novel benzoflavone and benzimidazolone compounds [J].
Caci, E ;
Folli, C ;
Zegarra-Moran, O ;
Ma, TH ;
Springsteel, MF ;
Sammelson, RE ;
Nantz, MH ;
Kurth, MJ ;
Verkman, AS ;
Galietta, LJV .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2003, 285 (01) :L180-L188
[10]   Phloxine B interacts with the cystic fibrosis transmembrane conductance regulator at multiple sites to modulate channel activity [J].
Cai, ZW ;
Sheppard, DN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (22) :19546-19553