Existence, uniqueness and L8-bound for weak solutions of a time fractional Keller-Segel system

被引:2
|
作者
Guo, Liujie [1 ,2 ]
Gao, Fei [1 ,2 ]
Zhan, Hui [1 ,2 ]
机构
[1] Wuhan Univ Technol, Dept Math, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Ctr Math Sci, Wuhan 430070, Peoples R China
关键词
Caputo derivative; Time fractional Keller-Segel equations; Weak solutions; Global existence; Uniqueness L-8-bound; ELLIPTIC CHEMOTAXIS SYSTEM; BLOW-UP; ASYMPTOTIC-BEHAVIOR; GLOBAL EXISTENCE; LOGISTIC SOURCE; MODEL; DIFFUSION; GROWTH; BOUNDEDNESS; STABILITY;
D O I
10.1016/j.chaos.2022.112185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the global existence, uniqueness and L-infinity-bound for the weak solutions to a time fractional Keller-Segel systems with logistic source {& part;(alpha)u/& part;t(alpha) = delta u-& nabla; .(u & nabla;v) + u(a-bu), x is an element of R-n, t > 0 0 = delta v + u, x is an element of R-n, t > 0 where alpha is an element of (0,1), a >= 0, b > 0 with u(x,0) = u(0), v(x, t) is represented by the Newton potential v(x,t) = 1/n(n-2)omega(n)integral 1/R-n|x-y|(n-2) u(y)dy We divide the damping coefficient into different cases and use different methods to prove the existence of weak solutions: (i) when b > 1 - 2/n, for any initial value u0 and birth rate a >= 0, weak solutions exist globally. (ii) when 0 < b <= 1 - 2/n, weak solutions have global existence under the condition of small initial data u(0) and small birth rate a. Furthermore, by establishing fractional differential inequalities, the L-infinity-bound of weak solutions is obtained. Finally, we also prove that the weak solution must be unique when the damping effect is strong. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] ON THE FRACTIONAL-IN-TIME KELLER-SEGEL MODEL VIA SONINE KERNELS
    Costa, Masterson
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) : 661 - 685
  • [42] On the fractional heat semigroup and product estimates in Besov spaces and applications in theoretical analysis of the fractional Keller-Segel system
    Perez-Lopez, Jhean E.
    Rueda-Gomez, Diego A.
    Villamizar-Roa, elder J.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (03):
  • [43] Fractional Adams-Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system
    Zayernouri, Mohsen
    Matzavinos, Anastasios
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 317 : 1 - 14
  • [44] Solutions to the Keller-Segel system with non-integrable behavior at spatial infinity
    Winkler, Michael
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (02) : 919 - 959
  • [45] Periodic solutions of the parabolic-elliptic Keller-Segel system on whole spaces
    Loan, Nguyen Thi
    Thi, Van Anh Nguyen
    Thuy, Tran Van
    Xuan, Pham Truong
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (08) : 3003 - 3023
  • [46] Uniqueness of weak solutions to a Keller-Segel-Navier-Stokes system
    Chen, Miaochao
    Lu, Shengqi
    Liu, Qilin
    APPLIED MATHEMATICS LETTERS, 2021, 121
  • [47] Behavior in time of solutions of a Keller-Segel system with flux limitation and source term
    Marras, Monica
    Vernier-Piro, Stella
    Yokota, Tomomi
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (05):
  • [48] Global existence of weak solutions to a signal-dependent Keller-Segel model for local sensing chemotaxis
    Li, Haixia
    Jiang, Jie
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61
  • [49] SMALL-MASS SOLUTIONS IN THE TWO-DIMENSIONAL KELLER-SEGEL SYSTEM COUPLED TO THE NAVIER-STOKES EQUATIONS
    Winkler, Michael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 2041 - 2080
  • [50] EXISTENCE OF SOLUTIONS TO THE PATLAK--KELLER--SEGEL--NAVIER--STOKES SYSTEM
    Gao, Yuetian
    Han, Fangyu
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (05) : 6798 - 6821