Existence, uniqueness and L8-bound for weak solutions of a time fractional Keller-Segel system

被引:2
|
作者
Guo, Liujie [1 ,2 ]
Gao, Fei [1 ,2 ]
Zhan, Hui [1 ,2 ]
机构
[1] Wuhan Univ Technol, Dept Math, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Ctr Math Sci, Wuhan 430070, Peoples R China
关键词
Caputo derivative; Time fractional Keller-Segel equations; Weak solutions; Global existence; Uniqueness L-8-bound; ELLIPTIC CHEMOTAXIS SYSTEM; BLOW-UP; ASYMPTOTIC-BEHAVIOR; GLOBAL EXISTENCE; LOGISTIC SOURCE; MODEL; DIFFUSION; GROWTH; BOUNDEDNESS; STABILITY;
D O I
10.1016/j.chaos.2022.112185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the global existence, uniqueness and L-infinity-bound for the weak solutions to a time fractional Keller-Segel systems with logistic source {& part;(alpha)u/& part;t(alpha) = delta u-& nabla; .(u & nabla;v) + u(a-bu), x is an element of R-n, t > 0 0 = delta v + u, x is an element of R-n, t > 0 where alpha is an element of (0,1), a >= 0, b > 0 with u(x,0) = u(0), v(x, t) is represented by the Newton potential v(x,t) = 1/n(n-2)omega(n)integral 1/R-n|x-y|(n-2) u(y)dy We divide the damping coefficient into different cases and use different methods to prove the existence of weak solutions: (i) when b > 1 - 2/n, for any initial value u0 and birth rate a >= 0, weak solutions exist globally. (ii) when 0 < b <= 1 - 2/n, weak solutions have global existence under the condition of small initial data u(0) and small birth rate a. Furthermore, by establishing fractional differential inequalities, the L-infinity-bound of weak solutions is obtained. Finally, we also prove that the weak solution must be unique when the damping effect is strong. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] On the fractional doubly parabolic Keller-Segel system modelling chemotaxis
    Bezerra, Mario
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (09) : 1827 - 1874
  • [22] Convergence to equilibria of global solutions to a degenerate quasilinear Keller-Segel system
    Jiang, Jie
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05):
  • [23] ASYMPTOTIC BEHAVIORS AND EXISTENCE OF TRAVELING WAVE SOLUTIONS TO THE KELLER-SEGEL MODEL WITH LOGARITHMIC SENSITIVITY
    LI, C. H. E. N.
    Liu, J. I. A. N. G.
    DU, Z. E. N. G. J., I
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (03): : 1771 - 1786
  • [24] On the time-fractional Keller-Segel model for chemotaxis
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (02) : 769 - 798
  • [25] EXACT CRITERION FOR GLOBAL EXISTENCE AND BLOW UP TO A DEGENERATE KELLER-SEGEL SYSTEM
    Chen, Li
    Wang, Jinhuan
    DOCUMENTA MATHEMATICA, 2014, 19 : 103 - 120
  • [26] Weak solutions to the Cauchy problem of fractional time-space Keller-Segel equation
    Jiang, Zi-wen
    Wang, Li-zhen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14094 - 14113
  • [27] GLOBAL EXISTENCE OF SOLUTIONS TO A KELLER-SEGEL MODEL WITH LOGISTIC SOURCE IN R2
    Wang, Jinhuan
    Chen, Haomeng
    Zhuang, Mengdi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, : 2806 - 2821
  • [28] On uniqueness theorem on weak solutions to the parabolic-parabolic Keller-Segel system of degenerate and singular types
    Miura, Masanari
    Sugiyama, Yoshie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) : 4064 - 4086
  • [29] Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid
    Kozono, Hideo
    Miura, Masanari
    Sugiyama, Yoshie
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (05) : 1663 - 1683
  • [30] Persistence phenomena of classical solutions to a fractional Keller-Segel model with time-space dependent logistic source
    Zhang, Weiyi
    Liu, Zuhan
    Zhou, Ling
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (17) : 11683 - 11713