Simulation of high resistance floating electrode liquid crystal lens

被引:0
|
作者
Huang, Zhi-yu [1 ]
Yu, Tao [1 ]
Pan, Guo-bin [1 ]
Tao, Ting-ting [1 ]
Zhang, Guang-xiang [1 ]
机构
[1] Dalian Maritime Univ, Sch Sci, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
floating electrode; liquid crystal lens; simulation; square resistance; wavefront error; WAVE-FRONT;
D O I
10.37188/CJLCD.2022-0018
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
A thin film dielectric layer was used to separate the floating electrode and the mode control electrode. The floating electrode and the mode control electrode were on the same side of the substrate, which avoided the restriction of using a thin substrate. Comsol Multiphysics software was used to simulate the influence of the square resistance of floating electrode and the thickness of thin film on the wavefront error of liquid crystal lens. For the liquid crystal lens with a diameter of 2 mm, when the square resistance of floating electrode varies from 150 Omega.square(-1) to 300 M Omega.square(-1), the wavefront error of liquid crystal lens decreases first and then increases, and reaches a minimum value at 40 M Omega.square(-1). When the thickness of the dielectric layer varies from 50 nm to 5 000 nm, the square resistance of the floating electrode with the smallest wavefront error decreases from 50 M Omega.square(-1 )to 2 M Omega.square(-1). and the optimal square resistance parameters decrease monotonically. When the square resistance of floating electrode is 40 M Omega.square(-1) and the thickness of dielectric layer is 250 nm, the focusing characteristics and wavefront error characteristics of liquid crystal lens are studied. When the focal length varies from 250 mm to infinity, the maximum root mean square error of wavefront at 589 nm is 0. 041 2 mu m, less than lambda/14, which satisfy the Marechal criterion.
引用
收藏
页码:687 / 693
页数:7
相关论文
共 18 条
  • [1] AN ELECTROOPTICALLY CONTROLLED LIQUID-CRYSTAL DIFFRACTION GRATING
    CHEN, J
    BOS, PJ
    VITHANA, H
    JOHNSON, DL
    [J]. APPLIED PHYSICS LETTERS, 1995, 67 (18) : 2588 - 2590
  • [2] CHI Z Y, 2008, Applied Optics and Elements of Optical Design
  • [3] Optical camera with liquid crystal autofocus lens
    Galstian, T.
    Sova, O.
    Asatryan, K.
    Presniakov, V.
    Zohrabyan, A.
    Evensen, M.
    [J]. OPTICS EXPRESS, 2017, 25 (24): : 29945 - 29964
  • [4] High optical quality electrically variable liquid crystal lens using an additional floating electrode
    Galstian, T.
    Asatryan, K.
    Presniakov, V.
    Zohrabyan, A.
    Tork, A.
    Bagramyan, A.
    Careau, S.
    Thiboutot, M.
    Cotovanu, M.
    [J]. OPTICS LETTERS, 2016, 41 (14) : 3265 - 3268
  • [5] Modification of liquid crystal lens performance by embedded floating ring electrode
    Hsu, Che Ju
    Agrahari, Kaushlendra
    Selvaraj, Pravinraj
    Manohar, Rajiv
    Huang, Chi Yen
    [J]. OPTICAL MATERIALS EXPRESS, 2019, 9 (08): : 3226 - 3237
  • [6] Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision
    Hu, LF
    Xuan, L
    Liu, YJ
    Cao, ZL
    Li, DY
    Mu, QQ
    [J]. OPTICS EXPRESS, 2004, 12 (26): : 6403 - 6409
  • [7] Design of a large aperture tunable refractive Fresnel liquid crystal lens
    Jamali, Afsoon
    Bryant, Douglas
    Zhang, Yanli
    Grunnet-Jepsen, Anders
    Bhowmik, Achintya
    Bos, Philip J.
    [J]. APPLIED OPTICS, 2018, 57 (07) : B10 - B19
  • [8] Liquid-crystal lens with a focal length that is variable in a wide range
    Mao, Y
    Bin, W
    Sato, S
    [J]. APPLIED OPTICS, 2004, 43 (35) : 6407 - 6412
  • [9] Liquid-crystal adaptive lenses with modal control
    Naumov, AF
    Loktev, MY
    Guralnik, IR
    Vdovin, G
    [J]. OPTICS LETTERS, 1998, 23 (13) : 992 - 994
  • [10] A LIQUID-CRYSTAL MICROLENS OBTAINED WITH A NON-UNIFORM ELECTRIC-FIELD
    NOSE, T
    SATO, S
    [J]. LIQUID CRYSTALS, 1989, 5 (05) : 1425 - 1433