A unified stress-strain model for LRS FRP-confined concrete columns with square and circular cross-sections

被引:16
|
作者
Yuan, Wan-Ying [1 ]
Han, Qiang [1 ]
Bai, Yu-Lei [1 ]
机构
[1] Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
关键词
Concrete; FRP; Large rupture strain (LRS); Stress-strain model; Threshold confinement level; AXIAL COMPRESSIVE BEHAVIOR; FIBER-REINFORCED POLYMER; RC COLUMNS; JACKETED CONCRETE; DESIGN-MODEL; STRENGTH; CRITERION;
D O I
10.1016/j.engstruct.2022.113900
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Large rupture strain (LRS) fiber-reinforced polymer (FRP) composites with an ultimate elongation of greater than 5% offer superior deformation and energy dissipation abilities over traditional carbon or glass FRP when used them in lateral confinement of concrete under the same confinement level. However, a flexible model for predicting the stress-strain relationship of concrete columns confined with LRS FRP is not yet perfectly developed, especially for noncircular columns experiencing nonuniform confining stress. Accordingly, an extensive database of LRS FRP-confined square and circular concrete columns with corner radius ratios varying from 0 to 1 was employed to establish a unified stress-strain model. This model not only includes the determinations of key points, but also attempts to define the threshold confinement level to distinguish the post-peak strain-hardening and strain-softening behaviors. The mathematical expression of the model is simple; it also avoids discontinuities in the prediction of different cross-sections. The proposed model is verified to be accurate in predicting the complete stress-strain curves of LRS FRP-confined square and circular concrete columns with hardening and softening behaviors. In addition, it outperforms the existing theoretical models in predicting the ultimate strength and the ultimate axial strain.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Analytical model for FRP-confined circular reinforced concrete columns
    Eid, R.
    Paultre, P.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2008, 12 (05) : 541 - 552
  • [42] Stress-Strain Behavior of FRP-Confined Recycled Aggregate Concrete
    Zhao, J. L.
    Yu, T.
    Teng, J. G.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2015, 19 (03)
  • [43] Cyclic axial compression stress-strain model for FRP-confined concrete-encased cross-shaped steel columns
    Pan, Molan
    Wang, Daiyu
    ENGINEERING STRUCTURES, 2024, 298
  • [44] Stress-strain models for FRP-confined thermally damaged concrete
    Liu, Wang-Wei
    Wang, Tian-Ci
    Liang, Jian
    Ouyang, Li-Jun
    Gao, Wan-Yang
    JOURNAL OF BUILDING ENGINEERING, 2024, 82
  • [45] Analysis-oriented stress-strain model for FRP-confined predamaged concrete
    Cao, Yu-Gui
    Zhang, Yang
    Liu, Mu-Yu
    Lu, Zhi-Fang
    Jiang, Cheng
    JOURNAL OF BUILDING ENGINEERING, 2021, 36
  • [46] Refinement of a Design-Oriented Stress-Strain Model for FRP-Confined Concrete
    Teng, J. G.
    Jiang, T.
    Lam, L.
    Luo, Y. Z.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2009, 13 (04) : 269 - 278
  • [47] Stress-strain model for FRP-confined concrete subject to arbitrary load path
    Li, Pengda
    Wu, Yu-Fei
    Zhou, Yingwu
    Xing, Feng
    COMPOSITES PART B-ENGINEERING, 2019, 163 : 9 - 25
  • [48] Stress-strain model for FRP-confined concrete under cyclic axial compression
    Lam, L.
    Teng, J. G.
    ENGINEERING STRUCTURES, 2009, 31 (02) : 308 - 321
  • [49] Analysis-oriented stress-strain model for FRP-confined concrete with preload
    Pan, Yi
    Guo, Rui
    Li, Horigyi
    Tang, Hongyuan
    Huang, Jingxiang
    COMPOSITE STRUCTURES, 2017, 166 : 57 - 67
  • [50] Stress-strain model of FRP-confined concrete column under axial compression
    Wang, Wei
    Xu, Shun-De
    Zhou, Ai-Zhao
    Zhang, Fang
    Tumu Jianzhu yu Huanjing Gongcheng/Journal of Civil, Architectural and Environmental Engineering, 2012, 34 (01): : 17 - 20