Investigation of Aerosol Types and Vertical Distributions Using Polarization Raman Lidar over Vipava Valley

被引:9
作者
Wang, Longlong [1 ]
Macak, Marija Bervida [2 ]
Stanic, Samo [2 ]
Bergant, Klemen [2 ,3 ]
Gregoric, Asta [2 ,4 ]
Drinovec, Luka [2 ]
Mocnik, Grisa [2 ]
Yin, Zhenping [1 ]
Yi, Yang [1 ]
Mueller, Detlef [1 ]
Wang, Xuan [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[2] Univ Nova Gorica, Ctr Atmospher Res, Nova Gorica 5270, Slovenia
[3] European Natl Meteorol Serv, B-1180 Brussels, Belgium
[4] Aerosol Doo, Ljubljana 1000, Slovenia
基金
中国国家自然科学基金;
关键词
valley air pollution; aerosol vertical distributions; lidar remote sensing; aerosol identification; ELASTIC BACKSCATTER LIDAR; BLACK CARBON; MICROPHYSICAL PROPERTIES; OPTICAL-PROPERTIES; DUST AEROSOLS; WATER-VAPOR; IN-SITU; PROFILES; SMOKE; CALIBRATION;
D O I
10.3390/rs14143482
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aerosol direct radiative forcing is strongly dependent on aerosol distributions and aerosol types. A detailed understanding of such information is still missing at the Alpine region, which currently undergoes amplified climate warming. Our goal was to study the vertical variability of aerosol types within and above the Vipava valley (45.87 degrees N, 13.90 degrees E, 125 m a.s.1.) to reveal the vertical impact of each particular aerosol type on this region, a representative complex terrain in the Alpine region which often suffers from air pollution in the wintertime. This investigation was performed using the entire dataset of a dual-wavelength polarization Raman lidar system, which covers 33 nights from September to December 2017. The lidar provides measurements from midnight to early morning (typically from 00:00 to 06:00 CET) to provide aerosol-type dependent properties, which include particle linear depolarization ratio, lidar ratio at 355 nm and the aerosol backscatter Angstrom exponent between 355 nm and 1064 nm. These aerosol properties were compared with similar studies, and the aerosol types were identified by the measured aerosol optical properties. Primary anthropogenic aerosols within the valley are mainly emitted from two sources: individual domestic heating systems, which mostly use biomass fuel, and traffic emissions. Natural aerosols, such as mineral dust and sea salt, are mostly transported over large distances. A mixture of two or more aerosol types was generally found. The aerosol characterization and statistical properties of vertical aerosol distributions were performed up to 3 km.
引用
收藏
页数:21
相关论文
共 67 条
[21]   Heating Rate of Light Absorbing Aerosols: Time-Resolved Measurements, the Role of Clouds, and Source Identification [J].
Ferrero, Luca ;
Mocnik, Grisa ;
Cogliati, Sergio ;
Gregoric, Asta ;
Colombo, Roberto ;
Bolzacchini, Ezio .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (06) :3546-3555
[22]   Application of the Ultraviolet Scanning Elastic Backscatter LiDAR for the Investigation of Aerosol Variability [J].
Gao, Fei ;
Stanic, Samo ;
Bergant, Klemen ;
Li, Ying ;
Li, Songhui ;
Hua, Dengxin ;
Wang, Longlong .
REMOTE SENSING, 2015, 7 (05) :6320-6335
[23]   Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece [J].
Giannakaki, E. ;
Balis, D. S. ;
Amiridis, V. ;
Zerefos, C. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2010, 3 (03) :569-578
[24]   The impact of temperature inversions on black carbon and particle mass concentrations in a mountainous area [J].
Glojek, Kristina ;
Mocnik, Grisa ;
Alas, Honey Dawn C. ;
Cuesta-Mosquera, Andrea ;
Drinovec, Luka ;
Gregoric, Asta ;
Ogrin, Matej ;
Weinhold, Kay ;
Jezek, Irena ;
Mueller, Thomas ;
Rigler, Martin ;
Remskar, Maja ;
van Pinxteren, Dominik ;
Herrmann, Hartmut ;
Ristorini, Martina ;
Merkel, Maik ;
Markelj, Miha ;
Wiedensohler, Alfred .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (08) :5577-5601
[25]   The determination of highly time-resolved and source-separated black carbon emission rates using radon as a tracer of atmospheric dynamics [J].
Gregoric, Asta ;
Drinovec, Luka ;
Jezek, Irena ;
Vaupotic, Janja ;
Lenarcic, Matevz ;
Grauf, Domen ;
Wang, Longlong ;
Mole, Maruska ;
Stanic, Samo ;
Mocnik, Grisa .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (22) :14139-14162
[26]   Aerosol classification by airborne high spectral resolution lidar observations [J].
Gross, S. ;
Esselborn, M. ;
Weinzierl, B. ;
Wirth, M. ;
Fix, A. ;
Petzold, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (05) :2487-2505
[27]   Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2 [J].
Gross, Silke ;
Tesche, Matthias ;
Freudenthaler, Volker ;
Toledano, Carlos ;
Wiegner, Matthias ;
Ansmann, Albert ;
Althausen, Dietrich ;
Seefeldner, Meinhard .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2011, 63 (04) :706-724
[28]   Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements [J].
He, T. -Y. ;
Stanic, S. ;
Gao, F. ;
Bergant, K. ;
Veberic, D. ;
Song, X. -Q. ;
Dolzan, A. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (05) :891-900
[29]   One-dimensional variational retrieval of aerosol extinction coefficient from synthetic LIDAR and radiometric measurements [J].
Huneeus, N. ;
Boucher, O. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D14)
[30]   THE EARTHCARE SATELLITE The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation [J].
Illingworth, A. J. ;
Barker, H. W. ;
Beljaars, A. ;
Ceccaldi, M. ;
Chepfer, H. ;
Clerbaux, N. ;
Cole, J. ;
Delanoe, J. ;
Domenech, C. ;
Donovan, D. P. ;
Fukuda, S. ;
Hirakata, M. ;
Hogan, R. J. ;
Huenerbein, A. ;
Kollias, P. ;
Kubota, T. ;
Nakajima, T. ;
Nakajima, T. Y. ;
Nishizawa, T. ;
Ohno, Y. ;
Okamoto, H. ;
Oki, R. ;
Sato, K. ;
Satoh, M. ;
Shephard, M. W. ;
Velazquez-Blazquez, A. ;
Wandinger, U. ;
Wehr, T. ;
van Zadelhoff, G. -J. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2015, 96 (08) :1311-1332