A novel Monte Carlo approach to hybrid local volatility models

被引:6
|
作者
van der Stoep, Anthonie W. [1 ,2 ,3 ]
Grzelak, Lech A. [3 ,4 ]
Oosterlee, Cornelis W. [2 ,3 ]
机构
[1] Rabobank, PMV, Utrecht, Netherlands
[2] Natl Res Inst Math & Comp Sci, CWI, Amsterdam, Netherlands
[3] Delft Univ Technol, DIAM, Delft, Netherlands
[4] ING, Quantitat Analyt, Amsterdam, Netherlands
关键词
Local volatility; Monte Carlo; Hybrid; Stochastic volatility; Stochastic local volatility; Stochastic interest rates; Stochastic collocation; Regression; SABR; Heston; Hull-White; C15; C63; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; OPTIONS;
D O I
10.1080/14697688.2017.1280613
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18-20], [Int. J. Theor. Appl. Finance, 1998, 1, 61-110] models. In particular, we consider the stochastic local volatility modelsee e.g. Lipton et al. [Quant. Finance, 2014, 14, 1899-1922], Piterbarg [Risk, 2007, April, 84-89], Tataru and Fisher [Quantitative Development Group, Bloomberg Version 1, 2010], Lipton [Risk, 2002, 15, 61-66]and the local volatility model incorporating stochastic interest ratessee e.g. Atlan [ArXiV preprint math/0604316, 2006], Piterbarg [Risk, 2006, 19, 66-71], Deelstra and Rayee [Appl. Math. Finance, 2012, 1-23], Ren et al. [Risk, 2007, 20, 138-143]. For both model classes a particular (conditional) expectation needs to be evaluated which cannot be extracted from the market and is expensive to compute. We establish accurate and cheap to evaluate' approximations for the expectations by means of the stochastic collocation method [SIAM J. Numer. Anal., 2007, 45, 1005-1034], [SIAM J. Sci. Comput., 2005, 27, 1118-1139], [Math. Models Methods Appl. Sci., 2012, 22, 1-33], [SIAM J. Numer. Anal., 2008, 46, 2309-2345], [J. Biomech. Eng., 2011, 133, 031001], which was recently applied in the financial context [Available at SSRN 2529691, 2014], [J. Comput. Finance, 2016, 20, 1-19], combined with standard regression techniques. Monte Carlo pricing experiments confirm that our method is highly accurate and fast.
引用
收藏
页码:1347 / 1366
页数:20
相关论文
共 50 条
  • [31] Multilevel Monte Carlo simulation for the Heston stochastic volatility model
    Zheng, Chao
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (06)
  • [32] The waterline tree for separable local-volatility models
    Lok, U. Hou
    Lyuu, Yuh-Dauh
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (04) : 537 - 559
  • [33] The optimal investment problem in stochastic and local volatility models
    Piterbarg, Vladimir V.
    JOURNAL OF INVESTMENT STRATEGIES, 2018, 7 (04): : 1 - 25
  • [34] A hybrid (Monte Carlo/deterministic) approach for multi-dimensional radiation transport
    Bal, Guillaume
    Davis, Anthony B.
    Langmore, Ian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (20) : 7723 - 7735
  • [35] Hybrid importance sampling Monte Carlo approach for yield estimation in circuit design
    Tyagi, Anuj K.
    Jonsson, Xavier
    Beelen, Theo G. J.
    Schilders, Wil H. A.
    JOURNAL OF MATHEMATICS IN INDUSTRY, 2018, 8
  • [36] Mixed Precision Multilevel Monte Carlo on Hybrid Computing Systems
    Brugger, Christian
    de Schryver, Christian
    Wehn, Norbert
    Omland, Steffen
    Hefter, Mario
    Ritter, Klaus
    Kostiuk, Anton
    Korn, Ralf
    2014 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING & ECONOMICS (CIFER), 2014, : 215 - 222
  • [37] Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models
    Durham, Garland B.
    JOURNAL OF ECONOMETRICS, 2006, 133 (01) : 273 - 305
  • [38] Prediction of non-carcinogenic health risk using Hybrid Monte Carlo-machine learning approach
    Mallik, Santanu
    Das, Saikat
    Chakraborty, Abhigyan
    Mishra, Umesh
    Talukdar, Swapan
    Bera, Somnath
    Ramana, G. V.
    HUMAN AND ECOLOGICAL RISK ASSESSMENT, 2023, 29 (3-4): : 777 - 800
  • [39] IMPLIED VOLATILITY FROM ASIAN OPTIONS VIA MONTE CARLO METHODS
    Yang, Zhaojun
    Ewald, Christian-Oliver
    Xiao, Yajun
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2009, 12 (02) : 153 - 178
  • [40] Electricity forward and volatility curves computation based on Monte Carlo simulation
    Vazquez, Miguel
    Barquin, Julian
    Batlle, Carlos
    2006 INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS, VOLS 1 AND 2, 2006, : 950 - 954