A novel Monte Carlo approach to hybrid local volatility models

被引:6
|
作者
van der Stoep, Anthonie W. [1 ,2 ,3 ]
Grzelak, Lech A. [3 ,4 ]
Oosterlee, Cornelis W. [2 ,3 ]
机构
[1] Rabobank, PMV, Utrecht, Netherlands
[2] Natl Res Inst Math & Comp Sci, CWI, Amsterdam, Netherlands
[3] Delft Univ Technol, DIAM, Delft, Netherlands
[4] ING, Quantitat Analyt, Amsterdam, Netherlands
关键词
Local volatility; Monte Carlo; Hybrid; Stochastic volatility; Stochastic local volatility; Stochastic interest rates; Stochastic collocation; Regression; SABR; Heston; Hull-White; C15; C63; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; OPTIONS;
D O I
10.1080/14697688.2017.1280613
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18-20], [Int. J. Theor. Appl. Finance, 1998, 1, 61-110] models. In particular, we consider the stochastic local volatility modelsee e.g. Lipton et al. [Quant. Finance, 2014, 14, 1899-1922], Piterbarg [Risk, 2007, April, 84-89], Tataru and Fisher [Quantitative Development Group, Bloomberg Version 1, 2010], Lipton [Risk, 2002, 15, 61-66]and the local volatility model incorporating stochastic interest ratessee e.g. Atlan [ArXiV preprint math/0604316, 2006], Piterbarg [Risk, 2006, 19, 66-71], Deelstra and Rayee [Appl. Math. Finance, 2012, 1-23], Ren et al. [Risk, 2007, 20, 138-143]. For both model classes a particular (conditional) expectation needs to be evaluated which cannot be extracted from the market and is expensive to compute. We establish accurate and cheap to evaluate' approximations for the expectations by means of the stochastic collocation method [SIAM J. Numer. Anal., 2007, 45, 1005-1034], [SIAM J. Sci. Comput., 2005, 27, 1118-1139], [Math. Models Methods Appl. Sci., 2012, 22, 1-33], [SIAM J. Numer. Anal., 2008, 46, 2309-2345], [J. Biomech. Eng., 2011, 133, 031001], which was recently applied in the financial context [Available at SSRN 2529691, 2014], [J. Comput. Finance, 2016, 20, 1-19], combined with standard regression techniques. Monte Carlo pricing experiments confirm that our method is highly accurate and fast.
引用
收藏
页码:1347 / 1366
页数:20
相关论文
共 50 条
  • [21] A sequential Monte Carlo approach for the pricing of barrier option under a stochastic volatility model
    Cuomo, S.
    Di Lorenzo, E.
    Di Somma, V
    Toraldo, G.
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2020, 13 (01) : 128 - 145
  • [22] A General Valuation Framework for SABR and Stochastic Local Volatility Models
    Cui, Zhenyu
    Kirkby, J. Lars
    Duy Nguyen
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2018, 9 (02): : 520 - 563
  • [23] A Taylor series approach to pricing and implied volatility for local-stochastic volatility models
    Lorig, Matthew
    Pagliarani, Stefano
    Pascucci, Andrea
    JOURNAL OF RISK, 2014, 17 (02): : 3 - 19
  • [24] Volatility and GMM — Monte Carlo studies and empirical estimations
    Hartmut Nagel
    Rainer Schöbel
    Statistical Papers, 1999, 40 : 297 - 321
  • [25] On full calibration of hybrid local volatility and regime-switching models
    He, Xin-Jiang
    Zhu, Song-Ping
    JOURNAL OF FUTURES MARKETS, 2018, 38 (05) : 586 - 606
  • [26] ASYMPTOTICS OF IMPLIED VOLATILITY IN LOCAL VOLATILITY MODELS
    Gatheral, Jim
    Hsu, Elton P.
    Laurence, Peter
    Ouyang, Cheng
    Wang, Tai-Ho
    MATHEMATICAL FINANCE, 2012, 22 (04) : 591 - 620
  • [27] A finite volume - alternating direction implicit approach for the calibration of stochastic local volatility models
    Wyns, Maarten
    Du Toit, Jacques
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (11) : 2239 - 2267
  • [28] Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study
    Andersen, TG
    Chung, HJ
    Sorensen, BE
    JOURNAL OF ECONOMETRICS, 1999, 91 (01) : 61 - 87
  • [29] EXPLICIT IMPLIED VOLATILITIES FOR MULTIFACTOR LOCAL-STOCHASTIC VOLATILITY MODELS
    Lorig, Matthew
    Pagliarani, Stefano
    Pascucci, Andrea
    MATHEMATICAL FINANCE, 2017, 27 (03) : 926 - 960
  • [30] APPROXIMATING LOCAL VOLATILITY FUNCTIONS OF STOCHASTIC VOLATILITY MODELS: A CLOSED-FORM EXPANSION APPROACH
    An, Yu
    Li, Chenxu
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2015, 29 (04) : 547 - 563