A novel Monte Carlo approach to hybrid local volatility models

被引:6
|
作者
van der Stoep, Anthonie W. [1 ,2 ,3 ]
Grzelak, Lech A. [3 ,4 ]
Oosterlee, Cornelis W. [2 ,3 ]
机构
[1] Rabobank, PMV, Utrecht, Netherlands
[2] Natl Res Inst Math & Comp Sci, CWI, Amsterdam, Netherlands
[3] Delft Univ Technol, DIAM, Delft, Netherlands
[4] ING, Quantitat Analyt, Amsterdam, Netherlands
关键词
Local volatility; Monte Carlo; Hybrid; Stochastic volatility; Stochastic local volatility; Stochastic interest rates; Stochastic collocation; Regression; SABR; Heston; Hull-White; C15; C63; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; OPTIONS;
D O I
10.1080/14697688.2017.1280613
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18-20], [Int. J. Theor. Appl. Finance, 1998, 1, 61-110] models. In particular, we consider the stochastic local volatility modelsee e.g. Lipton et al. [Quant. Finance, 2014, 14, 1899-1922], Piterbarg [Risk, 2007, April, 84-89], Tataru and Fisher [Quantitative Development Group, Bloomberg Version 1, 2010], Lipton [Risk, 2002, 15, 61-66]and the local volatility model incorporating stochastic interest ratessee e.g. Atlan [ArXiV preprint math/0604316, 2006], Piterbarg [Risk, 2006, 19, 66-71], Deelstra and Rayee [Appl. Math. Finance, 2012, 1-23], Ren et al. [Risk, 2007, 20, 138-143]. For both model classes a particular (conditional) expectation needs to be evaluated which cannot be extracted from the market and is expensive to compute. We establish accurate and cheap to evaluate' approximations for the expectations by means of the stochastic collocation method [SIAM J. Numer. Anal., 2007, 45, 1005-1034], [SIAM J. Sci. Comput., 2005, 27, 1118-1139], [Math. Models Methods Appl. Sci., 2012, 22, 1-33], [SIAM J. Numer. Anal., 2008, 46, 2309-2345], [J. Biomech. Eng., 2011, 133, 031001], which was recently applied in the financial context [Available at SSRN 2529691, 2014], [J. Comput. Finance, 2016, 20, 1-19], combined with standard regression techniques. Monte Carlo pricing experiments confirm that our method is highly accurate and fast.
引用
收藏
页码:1347 / 1366
页数:20
相关论文
共 50 条
  • [1] THE HESTON STOCHASTIC-LOCAL VOLATILITY MODEL: EFFICIENT MONTE CARLO SIMULATION
    van der Stoep, Anthonie W.
    Grzelak, Lech A.
    Oosterlee, Cornelis W.
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2014, 17 (07)
  • [2] Monte Carlo calibration to implied volatility surface under volatility models
    Han, Chuan-Hsiang
    Kuo, Chien-Liang
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2017, 34 (03) : 763 - 778
  • [3] COLLOCATING VOLATILITY: A COMPETITIVE ALTERNATIVE TO STOCHASTIC LOCAL VOLATILITY MODELS
    van der Stoep, Anthonie W.
    Grzelak, Lech A.
    Oosterlee, Cornelis W.
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2020, 23 (06)
  • [4] Effective stochastic local volatility models
    Felpel, M.
    Kienitz, J.
    McWalter, T. A.
    QUANTITATIVE FINANCE, 2021,
  • [5] Effective stochastic local volatility models
    Felpel, M.
    Kienitz, J.
    Mcwalter, T. A.
    QUANTITATIVE FINANCE, 2023, 23 (12) : 1731 - 1750
  • [6] Implied local volatility models☆
    Li, Chen Xu
    Li, Chenxu
    Li, Chun
    JOURNAL OF EMPIRICAL FINANCE, 2025, 80
  • [7] Monte Carlo acceleration method for pricing variance derivatives under stochastic volatility models with jump diffusion
    Ma, Junmei
    Xu, Chenglong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (09) : 2039 - 2059
  • [8] Markov chain Monte Carlo methods for stochastic volatility models
    Chib, S
    Nardari, F
    Shephard, N
    JOURNAL OF ECONOMETRICS, 2002, 108 (02) : 281 - 316
  • [9] Comparing stochastic volatility models through Monte Carlo simulations
    Raggi, D
    Bordignon, S
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (07) : 1678 - 1699
  • [10] The forward smile in local-stochastic volatility models
    Mazzon, Andrea
    Pascucci, Andrea
    JOURNAL OF COMPUTATIONAL FINANCE, 2017, 20 (03) : 1 - 29