A novel Monte Carlo approach to hybrid local volatility models

被引:6
作者
van der Stoep, Anthonie W. [1 ,2 ,3 ]
Grzelak, Lech A. [3 ,4 ]
Oosterlee, Cornelis W. [2 ,3 ]
机构
[1] Rabobank, PMV, Utrecht, Netherlands
[2] Natl Res Inst Math & Comp Sci, CWI, Amsterdam, Netherlands
[3] Delft Univ Technol, DIAM, Delft, Netherlands
[4] ING, Quantitat Analyt, Amsterdam, Netherlands
关键词
Local volatility; Monte Carlo; Hybrid; Stochastic volatility; Stochastic local volatility; Stochastic interest rates; Stochastic collocation; Regression; SABR; Heston; Hull-White; C15; C63; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; OPTIONS;
D O I
10.1080/14697688.2017.1280613
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18-20], [Int. J. Theor. Appl. Finance, 1998, 1, 61-110] models. In particular, we consider the stochastic local volatility modelsee e.g. Lipton et al. [Quant. Finance, 2014, 14, 1899-1922], Piterbarg [Risk, 2007, April, 84-89], Tataru and Fisher [Quantitative Development Group, Bloomberg Version 1, 2010], Lipton [Risk, 2002, 15, 61-66]and the local volatility model incorporating stochastic interest ratessee e.g. Atlan [ArXiV preprint math/0604316, 2006], Piterbarg [Risk, 2006, 19, 66-71], Deelstra and Rayee [Appl. Math. Finance, 2012, 1-23], Ren et al. [Risk, 2007, 20, 138-143]. For both model classes a particular (conditional) expectation needs to be evaluated which cannot be extracted from the market and is expensive to compute. We establish accurate and cheap to evaluate' approximations for the expectations by means of the stochastic collocation method [SIAM J. Numer. Anal., 2007, 45, 1005-1034], [SIAM J. Sci. Comput., 2005, 27, 1118-1139], [Math. Models Methods Appl. Sci., 2012, 22, 1-33], [SIAM J. Numer. Anal., 2008, 46, 2309-2345], [J. Biomech. Eng., 2011, 133, 031001], which was recently applied in the financial context [Available at SSRN 2529691, 2014], [J. Comput. Finance, 2016, 20, 1-19], combined with standard regression techniques. Monte Carlo pricing experiments confirm that our method is highly accurate and fast.
引用
收藏
页码:1347 / 1366
页数:20
相关论文
共 59 条
[1]  
Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables
[2]   APPROXIMATING LOCAL VOLATILITY FUNCTIONS OF STOCHASTIC VOLATILITY MODELS: A CLOSED-FORM EXPANSION APPROACH [J].
An, Yu ;
Li, Chenxu .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2015, 29 (04) :547-563
[3]  
Andersen L, 2008, J COMPUT FINANC, V11, P1, DOI DOI 10.21314/JCF.2008.189
[4]  
[Anonymous], 1999, Volatility and Correlation in the Pricing of Equity, FX, and Interest-Rate Options
[5]  
[Anonymous], 2006, Risk magazine
[6]  
Atlan M., 2006, MATH0604316 ARXIV
[7]   A stochastic collocation method for elliptic partial differential equations with random input data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) :1005-1034
[8]  
Baker G., 2004, FX BARRIERS SMILE DY
[9]  
Beck J., 2012, MATH MOD METH APPL S, V22, P1
[10]   Analytical formulas for a local volatility model with stochastic rates [J].
Benhamou, E. ;
Gobet, E. ;
Miri, M. .
QUANTITATIVE FINANCE, 2012, 12 (02) :185-198