Stability analysis of a single neuron model with delay

被引:12
作者
Gyori, I [1 ]
Hartung, F [1 ]
机构
[1] Univ Veszprem, Dept Math & Comp, H-8201 Veszprem, Hungary
基金
匈牙利科学研究基金会;
关键词
delayed cellular neural networks; global asymptotic stability; numerical approximations;
D O I
10.1016/S0377-0427(03)00376-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the asymptotic behavior and numerical approximation of the single neuron model equation x(t)=-dx(t)+af(x(t))+bf(x(t-tau))+I, t greater than or equal to 0 (1), where d > 0 and f(x) = 0.5(\x+1\-\x-1\). We obtain new sufficient conditions for global asymptotic stability of constant equilibriums of (1), give several numerical examples to illustrate our results; and formulate conjectures on the asymptotic behavior of the solutions based on our numerical experiments. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 92
页数:20
相关论文
共 29 条
[1]  
Arik S, 1996, INT J CIRC THEOR APP, V24, P269, DOI 10.1002/(SICI)1097-007X(199605/06)24:3<269::AID-CTA915>3.0.CO
[2]  
2-L
[3]   AVERAGED NEURAL NETWORKS [J].
BURTON, TA .
NEURAL NETWORKS, 1993, 6 (05) :677-680
[4]  
Campbell S., 1999, Fields Inst. Commun., V21, P65
[5]   Global exponential stability and periodic solutions of delayed cellular neural networks [J].
Cao, JD .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2000, 60 (01) :38-46
[6]   CELLULAR NEURAL NETWORKS - THEORY [J].
CHUA, LO ;
YANG, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10) :1257-1272
[7]  
Chua LO, 1998, CNN: A Paradigm for Complexity
[8]   PERIODIC-SOLUTIONS OF CERTAIN NONLINEAR INTEGRAL-EQUATIONS WITH A TIME LAG [J].
COLEMAN, BD ;
RENNINGER, GH .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (01) :111-120
[9]  
DERHEIDEN U, 1981, LECT APPL MATH, V19, P355
[10]  
GOPLASAMY K, 1994, PHYSICA D, V75, P344