High-dimensional Bak-Sneppen model

被引:20
|
作者
De Los Rios, P [1 ]
Marsili, M
Vendruscolo, M
机构
[1] Univ Fribourg, Inst Phys Theor, CH-1700 Fribourg, Switzerland
[2] Sch Adv Int Studies, I-34100 Trieste, Italy
[3] INFM, I-34100 Trieste, Italy
[4] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
关键词
D O I
10.1103/PhysRevLett.80.5746
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on extensive numerical simulations on the Bak-Sneppen model in high dimensions. We uncover a very rich behavior as a function of dimensionality. For d > 2 the avalanche cluster becomes fractal and for d greater than or equal to 4 the process becomes transient. Finally, the exponents reach their mean field values for d = d(c) = 8, which is then the upper critical dimension of the Bak-Sneppen model.
引用
收藏
页码:5746 / 5749
页数:4
相关论文
共 50 条
  • [41] The Bak-Sneppen model on scale-free networks
    Moreno, Y
    Vazquez, A
    EUROPHYSICS LETTERS, 2002, 57 (05): : 765 - 771
  • [42] Self-organized criticality in the Bak-Sneppen model
    Pang, NN
    EUROPHYSICS LETTERS, 1996, 35 (02): : 79 - 84
  • [43] Damage-spreading in the parallel Bak-Sneppen model
    R. Cafiero
    A. Valleriani
    J.L. Vega
    The European Physical Journal B - Condensed Matter and Complex Systems, 1999, 7 : 505 - 508
  • [44] A random walk approach to the Bak-Sneppen evolution model
    Anton, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (08): : 2609 - 2618
  • [45] Rigorous Upper Bound for the Discrete Bak-Sneppen Model
    Volkov, Stanislav
    JOURNAL OF STATISTICAL PHYSICS, 2022, 186 (01)
  • [46] Temperature scaling, glassiness and stationarity in the Bak-Sneppen model
    D. Head
    The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 17 : 289 - 294
  • [47] Critical Thresholds and the Limit Distribution in the Bak-Sneppen Model
    Ronald Meester
    Dmitri Znamenski
    Communications in Mathematical Physics, 2004, 246 : 63 - 86
  • [48] Sensitivity to initial conditions in the Bak-Sneppen model of biological evolution
    F.A. Tamarit
    S.A. Cannas
    C. Tsallis
    The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 1 : 545 - 548
  • [49] dc=4 is the upper critical dimension for the Bak-Sneppen model
    Boettcher, S
    Paczuski, M
    PHYSICAL REVIEW LETTERS, 2000, 84 (10) : 2267 - 2270
  • [50] Fluctuations and finite-size effect in the Bak-Sneppen model
    Yang, CB
    Cai, X
    EUROPEAN PHYSICAL JOURNAL B, 2001, 21 (01): : 109 - 114