Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method

被引:113
作者
Liang, Liang [1 ,2 ,3 ]
Qin, Zhihao [4 ]
Zhao, Shuhe [1 ,5 ]
Di, Liping [3 ]
Zhang, Chao [3 ,6 ]
Deng, Meixia [3 ]
Lin, Hui [2 ]
Zhang, Lianpeng [2 ]
Wang, Lijuan [2 ]
Liu, Zhixiao [7 ]
机构
[1] Nanjing Univ, Sch Geog & Oceanog Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Jiangsu Normal Univ, Sch Geodesy & Geomat, Xuzhou 221116, Peoples R China
[3] George Mason Univ, Dept Geog & Geoinformat Sci, Fairfax, VA 22030 USA
[4] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
[5] Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing, Jiangsu, Peoples R China
[6] China Agr Univ, Coll Informat & Elect Engn, Beijing, Peoples R China
[7] Jishou Univ, Coll Biol & Environm Sci, Jishou, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectra; chlorophyll content; inversion; PROSAIL; random forest regression (RFR); PHOTOCHEMICAL REFLECTANCE INDEX; NEURAL-NETWORK ESTIMATION; REMOTE-SENSING DATA; LEAF-AREA INDEX; SPECTRAL REFLECTANCE; BAND SELECTION; RANDOM FOREST; BIDIRECTIONAL REFLECTANCE; NONDESTRUCTIVE ESTIMATION; OPTICAL-PROPERTIES;
D O I
10.1080/01431161.2016.1186850
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A hybrid inversion method was developed to estimate the leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) of crops. Fifty hyperspectral vegetation indices (VIs), such as the photochemical reflectance index (PRI) and canopy chlorophyll index (CCI), were compared to identify the appropriate VIs for crop LCC and CCC inversion. The hybrid inversion models were then generated from different modelling methods, including the curve-fitting and least squares support vector regression (LS-SVR) and random forest regression (RFR) algorithms, by using simulated Compact High Resolution Imaging Spectrometer (CHRIS) datasets that were generated by a radiative transfer model. Finally, the remote-sensing mapping of a CHRIS image was completed to test the inversion accuracy. The results showed that the remote-sensing mapping of the CHRIS image yielded an accuracy of R-2 = 0.77 and normalized root mean squared error (NRMSE) = 17.34% for the CCC inversion, and an accuracy of only R-2 = 0.33 and NRMSE = 26.03% for LCC inversion, which indicates that the remote-sensing technique was more appropriate for obtaining chlorophyll content at the canopy scale (CCC) than at the leaf scale (LCC). The estimated results of various VIs and algorithms suggested that the PRI and CCI were the optimal VIs for LCC and CCC inversion, respectively, and RFR was the optimal method for modelling.
引用
收藏
页码:2923 / 2949
页数:27
相关论文
共 89 条
[1]   Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression [J].
Adam, Elhadi ;
Mutanga, Onisimo ;
Abdel-Rahman, Elfatih M. ;
Ismail, Riyad .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (02) :693-714
[2]   Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics [J].
Antipov, Evgeny A. ;
Pokryshevskaya, Elena B. .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (02) :1772-1778
[3]   Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models [J].
Atzberger, C .
REMOTE SENSING OF ENVIRONMENT, 2004, 93 (1-2) :53-67
[4]   Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data:: Principles and validation [J].
Bacour, C. ;
Baret, F. ;
Beal, D. ;
Weiss, M. ;
Pavageau, K. .
REMOTE SENSING OF ENVIRONMENT, 2006, 105 (04) :313-325
[5]   POTENTIALS AND LIMITS OF VEGETATION INDEXES FOR LAI AND APAR ASSESSMENT [J].
BARET, F ;
GUYOT, G .
REMOTE SENSING OF ENVIRONMENT, 1991, 35 (2-3) :161-173
[6]   Non-destructive estimation of wheat leaf chlorophyll content from hyperspectral measurements through analytical model inversion [J].
Botha, E. J. ;
Leblon, B. ;
Zebarth, B. J. ;
Watmough, J. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (07) :1679-1697
[7]   Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level [J].
Bowyer, P ;
Danson, FM .
REMOTE SENSING OF ENVIRONMENT, 2004, 92 (03) :297-308
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]  
Brockmann C., 2011, SENTINEL 3 EXPT CAMP
[10]   Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density [J].
Broge, NH ;
Leblanc, E .
REMOTE SENSING OF ENVIRONMENT, 2001, 76 (02) :156-172