Edge intelligence computing for mobile augmented reality with deep reinforcement learning approach

被引:27
|
作者
Chen, Miaojiang [1 ]
Liu, Wei [2 ]
Wang, Tian [3 ]
Liu, Anfeng [1 ]
Zeng, Zhiwen [1 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Hunan Univ Chinese Med, Sch Informat, Changsha 410208, Peoples R China
[3] Huaqiao Univ, Coll Comp Sci & Technol, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
Beyond fifth-generation; Mobile augmented reality; Markov decision process; Deep reinforcement learning; Artificial intelligence; WIRELESS POWER TRANSFER; NETWORKING; OPTIMIZATION; MAXIMIZATION; INTERNET; THINGS; 5G;
D O I
10.1016/j.comnet.2021.108186
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Convergence of Augmented Reality (AR) and Next Generation Internet-of-Things (NG-IoT) can create new opportunities in many emerging areas, where the real-time data can be visualized on the devices. Integrated NG-IoT network, AR can improve efficiency in many fields such as mobile computing, smart city, intelligent transportation and telemedicine. However, limited by capability of mobile device, the reliability and latency requirements of AR applications is difficult to meet by local processing. To solve this problem, we study a binary offloading scheme for AR edge computing. Based on the proposed model, the parts of AR computing can offload to edge network servers, which is extend the computing capability of mobile AR devices. Moreover, a deep reinforcement learning offloading model is considered to acquire B5G network resource allocation and optimally AR offloading decisions. First, this offloading model does not need to solve combinatorial optimization, which is greatly reduced the computational complexity. Then the wireless channel gains and binary offloading states is modeled as a Markov decision process, and solved by deep reinforcement learning. Numerical results show that our scheme can achieve better performance compared with existing optimization methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Decentralized computation offloading for multi-user mobile edge computing: a deep reinforcement learning approach
    Zhao Chen
    Xiaodong Wang
    EURASIP Journal on Wireless Communications and Networking, 2020
  • [42] Collective Deep Reinforcement Learning for Intelligence Sharing in the Internet of Intelligence-Empowered Edge Computing
    Tang, Qinqin
    Xie, Renchao
    Yu, Fei Richard
    Chen, Tianjiao
    Zhang, Ran
    Huang, Tao
    Liu, Yunjie
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (11) : 6327 - 6342
  • [43] Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing
    Nkenyereye, Lionel
    Baeg, Kang-Jun
    Chung, Wan-Young
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (06) : 4328 - 4344
  • [44] Deep reinforcement learning based mobile edge computing for intelligent Internet of Things
    Zhao, Rui
    Wang, Xinjie
    Xia, Junjuan
    Fan, Liseng
    PHYSICAL COMMUNICATION, 2020, 43
  • [45] A Dynamic Service Placement Based on Deep Reinforcement Learning in Mobile Edge Computing
    Lu, Shuaibing
    Wu, Jie
    Shi, Jiamei
    Lu, Pengfan
    Fang, Juan
    Liu, Haiming
    NETWORK, 2022, 2 (01): : 106 - 122
  • [46] Deep reinforcement learning-based microservice selection in mobile edge computing
    Feiyan Guo
    Bing Tang
    Mingdong Tang
    Wei Liang
    Cluster Computing, 2023, 26 : 1319 - 1335
  • [47] Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
    Lu H.
    Gu C.
    Luo F.
    Ding W.
    Yang T.
    Zheng S.
    Gu, Chunhua (chgu@ecust.edu.cn), 1600, Science Press (57): : 1539 - 1554
  • [48] Deep reinforcement learning-based microservice selection in mobile edge computing
    Guo, Feiyan
    Tang, Bing
    Tang, Mingdong
    Liang, Wei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (02): : 1319 - 1335
  • [49] Multiple Workflows Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
    Gao, Yongqiang
    Wang, Yanping
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT I, 2022, 13155 : 476 - 493
  • [50] Task graph offloading via deep reinforcement learning in mobile edge computing
    Liu, Jiagang
    Mi, Yun
    Zhang, Xinyu
    Li, Xiaocui
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 545 - 555