The third cohomology group of a monoid and admissible abstract kernels

被引:0
|
作者
Martins-Ferreira, Nelson [1 ]
Montoli, Andrea [2 ]
Patchkoria, Alex [3 ]
Sobral, Manuela [4 ,5 ]
机构
[1] Inst Politecn Leiria, ESTG, CDRSP, Leiria, Portugal
[2] Univ Milan, Dipartimento Matemat Federigo Enriques, Via Saldini 50, I-20133 Milan, Italy
[3] Ivane Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, Tamarashvili Str 6, GE-0177 Tbilisi, Georgia
[4] Univ Coimbra, CMUC, P-3001501 Coimbra, Portugal
[5] Univ Coimbra, Dept Matemat, P-3001501 Coimbra, Portugal
基金
美国国家科学基金会;
关键词
Monoid; Schreier extension; abstract kernel; Eilenberg-Mac Lane cohomology of monoids; SCHREIER EXTENSIONS; OBSTRUCTION THEORY; CLASSIFICATION;
D O I
10.1142/S0218196722500436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the product of admissible abstract kernels of the form Phi : M -> End(G)/Inn(G) where M is a monoid, G is a group and Phi is a monoid homomorphism. Identifying C-equivalent abstract kernels, where C is the center of G, we obtain that the set M(M, C) of C-equivalence classes of admissible abstract kernels inducing the same action of M on C is a commutative monoid. Considering the submonoid L(M, C) of abstract kernels that are induced by special Schreier extensions, we prove that the factor monoid A(M, C) = M(M,C)/L(M,C) s an abelian group. Moreover, we show that this abelian group is isomorphic to the third cohomology group H-3(M , C).
引用
收藏
页码:1009 / 1041
页数:33
相关论文
共 14 条