Torsion-free space groups, 2-cohomology, and Scott modules

被引:0
作者
Cliff, G
Zheng, HL
机构
[1] Department of Mathematics, University of Alberta, Edmonton
关键词
D O I
10.1006/jabr.1996.0100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a subgroup C of order p of a finite group G, we find the summand M of the p-adic permutation module ind(C)(G)Z(p) such that H-2(G, M) not equal 0, and determine when M is the Scott module. This is applied to the study of torsion-free space groups. (C) 1996 Academic Press, Inc.
引用
收藏
页码:889 / 896
页数:8
相关论文
共 50 条
  • [41] On the cardinality of sumsets in torsion-free groups
    Boeroeczky, Karoly J.
    Palfy, Peter P.
    Serra, Oriol
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 1034 - 1041
  • [42] ON TORSION-FREE GROUPS OF FINITE RANK
    MEIER, D
    RHEMTULLA, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1984, 36 (06): : 1067 - 1080
  • [43] A CLASS OF TORSION-FREE ABELIAN GROUPS
    CRUDDIS, TB
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1970, 21 (SEP) : 243 - &
  • [44] Torsion-free quotients of braid groups
    Humphries, SP
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2001, 11 (03) : 363 - 373
  • [45] SEPARABLE TORSION-FREE MODULES OF SMALL TYPE
    GOBEL, R
    WALD, B
    HOUSTON JOURNAL OF MATHEMATICS, 1990, 16 (02): : 271 - 287
  • [46] HOMOMORPHISMS AND DUALITY FOR TORSION-FREE GROUPS
    WARFIELD, RB
    MATHEMATISCHE ZEITSCHRIFT, 1968, 107 (03) : 189 - &
  • [47] ON ENDOMORPHISMS OF TORSION-FREE HYPERBOLIC GROUPS
    Bogopolski, O.
    Ventura, E.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2011, 21 (08) : 1415 - 1446
  • [48] On torsion-free modules over valuation domains
    Rangaswamy, KM
    INTERNATIONAL SYMPOSIUM ON RING THEORY, 2001, : 313 - 328
  • [49] On quasi-regular torsion-free modules
    Paradero-Vilela, Jocelyn S.
    Paras, Agnes T.
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (07) : 2495 - 2505
  • [50] ON STABLE TORSION-FREE NILPOTENT GROUPS
    GRUNENWALD, C
    HAUG, F
    ARCHIVE FOR MATHEMATICAL LOGIC, 1993, 32 (06) : 451 - 462