l-modular representations of unramified p-adic U(2,1)

被引:2
作者
Kurinczuk, Robert James [1 ]
机构
[1] Univ Bristol, Heilbronn Inst Math Res, Dept Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
representations of p-adic groups; modular representations; SPECIAL UNITARY GROUPS; SUPERCUSPIDAL REPRESENTATIONS; SMOOTH REPRESENTATIONS; CLASSICAL-GROUPS; CHARACTERS; ALGEBRAS; FIELDS;
D O I
10.2140/ant.2014.8.1801
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct all irreducible cuspidal l-modular representations of a unitary group in three variables attached to an unramified extension of local fields of odd residual characteristic p with l not equal 6 D p. We describe the l-modular principal series and show that the supercuspidal support of an irreducible l-modular representation is unique up to conjugacy.
引用
收藏
页码:1801 / 1838
页数:38
相关论文
共 34 条
[1]  
[Anonymous], MATH Z
[2]   Description of the admissible dual of U(2,1)(F) by the Bushnell-Kutzko theory [J].
Blasco, L .
MANUSCRIPTA MATHEMATICA, 2002, 107 (02) :151-186
[3]  
Blondel C, 2005, MATH ANN, V331, P243, DOI 10.1007/s00208-004-0579-1
[4]   Weil representation and β-extensions [J].
Blondel, Corinne .
ANNALES DE L INSTITUT FOURIER, 2012, 62 (04) :1319-1366
[5]  
Bonnafé C, 2003, PUBL MATH-PARIS, V97, P1, DOI 10.1007/s10240-003-0013-3
[6]  
Bushnell C. J., 1993, ANN MATH STUD, V129
[7]   Smooth representations of reductive p-adic groups: Structure theory via types [J].
Bushnell, CJ ;
Kutzko, PC .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1998, 77 :582-634
[8]  
BUSHNELL CJ, 1993, ANN SCI ECOLE NORM S, V26, P261
[9]   FINITENESS FOR SMOOTH REPRESENTATIONS OF p-ADIC GROUPS [J].
Dat, Jean-Francois .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2009, 8 (02) :261-333
[10]   v-tempered representations of p-adic groups, I: l-adic case [J].
Dat, JF .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (03) :397-469