NUMERICAL EFFICACY STUDY OF DATA ASSIMILATION FOR THE 2D MAGNETOHYDRODYNAMIC EQUATIONS

被引:14
作者
Hudson, Joshua [1 ,2 ]
Jolly, Michael [3 ]
机构
[1] Univ Maryland Baltimore Cty, 1000 Hilltop Circle, Baltimore, MD 21055 USA
[2] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA
[3] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
来源
JOURNAL OF COMPUTATIONAL DYNAMICS | 2019年 / 6卷 / 01期
基金
美国国家科学基金会;
关键词
Magnetohydrodynamic equations; data assimilation; synchronization; BENARD CONVECTION; ALGORITHM; VELOCITY; STATE; MODES;
D O I
10.3934/jcd.2019006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the computational efficiency of several nudging data assimilation algorithms for the 2D magnetohydrodynamic equations, using varying amounts and types of data. We find that the algorithms work with much less resolution in the data than required by the rigorous estimates in [7]. We also test other abridged nudging algorithms to which the analytic techniques in [7] do not seem to apply. These latter tests indicate, in particular, that velocity data alone is sufficient for synchronization with a chaotic reference solution, while magnetic data alone is not. We demonstrate that a new nonlinear nudging algorithm, which is adaptive in both time and space, synchronizes at a super exponential rate.
引用
收藏
页码:131 / 145
页数:15
相关论文
共 34 条
  • [1] Continuous data assimilation for the three-dimensional Navier-Stokes-α model
    Albanez, Debora A. F.
    Nussenzveig Lopes, Helena J.
    Titi, Edriss S.
    [J]. ASYMPTOTIC ANALYSIS, 2016, 97 (1-2) : 139 - 164
  • [2] Downscaling the 2D Benard convection equations using continuous data assimilation
    Altaf, M. U.
    Titi, E. S.
    Gebrael, T.
    Knio, O. M.
    Zhao, L.
    McCabe, M. F.
    Hoteit, I.
    [J]. COMPUTATIONAL GEOSCIENCES, 2017, 21 (03) : 393 - 410
  • [3] FEEDBACK CONTROL OF NONLINEAR DISSIPATIVE SYSTEMS BY FINITE DETERMINING PARAMETERS - A REACTION-DIFFUSION PARADIGM
    Azouani, Abderrahim
    Titi, Edriss S.
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2014, 3 (04): : 579 - 594
  • [4] Continuous Data Assimilation Using General Interpolant Observables
    Azouani, Abderrahim
    Olson, Eric
    Titi, Edriss S.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2014, 24 (02) : 277 - 304
  • [5] Continuous data assimilation with stochastically noisy data
    Bessaih, Hakima
    Olson, Eric
    Titi, Edriss S.
    [J]. NONLINEARITY, 2015, 28 (03) : 729 - 753
  • [6] Downscaling data assimilation algorithm with applications to statistical solutions of the Navier-Stokes equations
    Biswas, Animikh
    Foias, Ciprian
    Mondaini, Cecilia F.
    Titi, Edriss S.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (02): : 295 - 326
  • [7] Continuous data assimilation for the 2D magnetohydrodynamic equations using one component of the velocity and magnetic fields
    Biswas, Animikh
    Hudson, Joshua
    Larios, Adam
    Pei, Yuan
    [J]. ASYMPTOTIC ANALYSIS, 2018, 108 (1-2) : 1 - 43
  • [8] Burns K., 2016, Dedalus: Flexible framework for spectrally solving differential equations
  • [9] Spectral Filtering of Interpolant Observables for a Discrete-in-Time Downscaling Data Assimilation Algorithm
    Celik, Emine
    Olson, Eric
    Titi, Edriss S.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (02): : 1118 - 1142
  • [10] CHARNEY J, 1969, J ATMOS SCI, V26, P1160, DOI 10.1175/1520-0469(1969)026<1160:UOIHDT>2.0.CO