On an Optimal Control Applied in MEMS Oscillator with Chaotic Behavior including Fractional Order

被引:8
|
作者
Tusset, Angelo Marcelo [1 ]
Janzen, Frederic Conrad [1 ]
Rocha, Rodrigo Tumolin [1 ]
Balthazar, Jose Manoel [1 ]
机构
[1] Fed Technol Univ Parana UTFPR, Dept Math, BR-84016210 Ponta Grossa, PR, Brazil
关键词
DETERMINISTIC SYSTEMS; CONTROL DESIGN; RESONATORS; PREDICTION; ACTUATION; DYNAMICS; NEMS;
D O I
10.1155/2018/5817597
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dynamical analysis and control of a nonlinear MEMS resonator system is considered. Phase diagram, power spectral density (FFT), bifurcation diagram, and the 0-1 test were applied to analyze the influence of the nonlinear stiffness term related to the dynamics of the system. In addition, the dynamical behavior of the system is considered in fractional order. Numerical results showed that the nonlinear stiffness parameter and the order of the fractional order were significant, indicating that the response can be either a chaotic or periodic behavior. In order to bring the system from a chaotic state to a periodic orbit, the optimal linear feedback control (OLFC) is considered. The robustness of the proposed control is tested by a sensitivity analysis to parametric uncertainties.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] ON AN OPTIMAL CONTROL APPLIED IN ATOMIC FORCE MICROSCOPY (AFM) INCLUDING FRACTIONAL-ORDER
    Tusset, Angelo M.
    Balthazar, Jose M.
    de Lima, Jeferson Jose
    Rocha, Rodrigo T.
    Janzen, Frederic C.
    Yamaguchi, Patricia S.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 4, 2017,
  • [2] Observer-based adaptive stabilization of the fractional-order chaotic MEMS resonator
    Luo, Shaohua
    Li, Shaobo
    Tajaddodianfar, Farid
    Hu, Jianjun
    NONLINEAR DYNAMICS, 2018, 92 (03) : 1079 - 1089
  • [3] Antimonotonicity and multistability in a fractional order memristive chaotic oscillator
    Chen, Chao-Yang
    Rajagopal, Karthikeyan
    Hamarash, Ibrahim Ismael
    Nazarimehr, Fahimeh
    Alsaadi, Fawaz E.
    Hayat, Tasawar
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (10) : 1969 - 1981
  • [4] Fracmemristor Oscillator: Fractional-Order Memristive Chaotic Circuit
    Pu, Yi-Fei
    Yu, Bo
    He, Qiu-Yan
    Yuan, Xiao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (12) : 5219 - 5232
  • [5] Fractional order biological snap oscillator: Analysis and control
    Trikha, Pushali
    Mahmoud, Emad E.
    Jahanzaib, Lone Seth
    Matoog, R. T.
    Abdel-Aty, Mahmoud
    CHAOS SOLITONS & FRACTALS, 2021, 145
  • [6] Predictive control of fractional-order chaotic systems
    Zheng, Yongai
    Ji, Zhilin
    CHAOS SOLITONS & FRACTALS, 2016, 87 : 307 - 313
  • [7] Adaptive backstepping optimal control of a fractional-order chaotic magnetic-field electromechanical transducer
    Luo, Shaohua
    Lewis, Frank L.
    Song, Yongduan
    Vamvoudakis, Kyriakos G.
    NONLINEAR DYNAMICS, 2020, 100 (01) : 523 - 540
  • [8] Accelerated Adaptive Fuzzy Optimal Control of Three Coupled Fractional-Order Chaotic Electromechanical Transducers
    Luo, Shaohua
    Lewis, Frank L.
    Song, Yongduan
    Ouakad, Hassen M.
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (07) : 1701 - 1714
  • [9] Maximizing the Chaotic Behavior of Fractional Order Chen System by Evolutionary Algorithms
    Nunez-Perez, Jose-Cruz
    Adeyemi, Vincent-Ademola
    Sandoval-Ibarra, Yuma
    Perez-Pinal, Francisco-Javier
    Tlelo-Cuautle, Esteban
    MATHEMATICS, 2021, 9 (11)
  • [10] Adaptive chaos control of the fractional-order arch MEMS resonator
    Luo, Shaohua
    Li, Shaobo
    Tajaddodianfar, Farid
    NONLINEAR DYNAMICS, 2018, 91 (01) : 539 - 547