A Clifford algebra associated to generalized Fibonacci quaternions

被引:1
作者
Flaut, Cristina [1 ]
机构
[1] Ovidius Univ, Fac Math & Comp Sci, Constanta 900527, Romania
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2014年
关键词
Clifford algebras; generalized Fibonacci quaternions;
D O I
10.1186/1687-1847-2014-279
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the construction of Clifford algebras, we associate to the set of generalized Fibonacci quaternions a quaternion algebra A (i.e., a Clifford algebra of dimension four). Indeed, for the generalized quaternion algebra H(beta(1), beta(2)), denoting E(beta(1), beta(2)) = 1/5[1 + beta(1) + 2 beta(2) + 5 beta(1)beta(2) + alpha(beta(1) + 3 beta(2) + 8 beta(1)beta(2))], if E(beta(1), beta(2)) > 0, therefore the algebra A is split. If E(beta(1), beta(2)) < 0, then the algebra A is a division algebra. In this way, we provide a nice algorithm to obtain a division quaternion algebra starting from a quaternion non-division algebra and vice versa.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] The Clifford Algebra of Physical Space and Elko Spinors
    Vaz, Jayme, Jr.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (02) : 582 - 601
  • [22] The alternative Clifford algebra of a ternary quadratic form
    Chapman, Adam
    Vishne, Uzi
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (10) : 3987 - 3994
  • [23] The Clifford-Yang algebra, noncommutative Clifford phase spaces and the deformed quantum oscillator
    Perelman, Carlos Castro
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (05)
  • [24] Clifford algebra periodicity for central simple algebras with an involution
    Unger, T
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (03) : 1141 - 1152
  • [25] Solving Some Quadratic Diophantine Equations with Clifford Algebra
    G. Aragón-González
    J. L. Aragón
    M. A. Rodríguez-Andrade
    Advances in Applied Clifford Algebras, 2011, 21 : 259 - 272
  • [26] Solving Some Quadratic Diophantine Equations with Clifford Algebra
    Aragon-Gonzalez, G.
    Aragon, J. L.
    Rodriguez-Andrade, M. A.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (02) : 259 - 272
  • [27] Associated Spaces in Clifford Analysis
    Bolivar, Yanett
    Lezama, Licet
    Marmol, Luis Gerardo
    Vanegas, Judith
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (03) : 539 - 551
  • [28] Associated Spaces in Clifford Analysis
    Yanett Bolívar
    Licet Lezama
    Luis Gerardo Mármol
    Judith Vanegas
    Advances in Applied Clifford Algebras, 2015, 25 : 539 - 551
  • [29] Two-State Quantum Systems Revisited: A Clifford Algebra Approach
    Pedro Amao
    Hernan Castillo
    Advances in Applied Clifford Algebras, 2021, 31
  • [30] Involutions of a Clifford Algebra Induced by Involutions of Orthogonal Group in Characteristic 2
    Mahmoudi, M. G.
    Nokhodkar, A. -H.
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (09) : 3898 - 3919